Import Distribution t/a Formula

Version No: 1.1

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 4

Issue Date: **29/07/2022** Print Date: **29/07/2022** L.GHS.NZL.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	COLORPAK PRO SERIES AEROSOL WAX & GREASE REMOVER	
Chemical Name	Not Applicable	
Synonyms	CPA0497; CPS420	
Proper shipping name	AEROSOLS	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack
--------------------------	---

Details of the supplier of the safety data sheet

Registered company name	Import Distribution t/a Formula	
Address	60B Cryers Road, East Tamaki Auckland 2013 New Zealand	
Telephone	09 273 3600	
Fax	Not Available	
Website	www.formula.co.nz	
Email	sales@formula.co.nz	

Emergency telephone number

Association / Organisation	NZ Poison Centre	
Emergency telephone numbers	0800 764 766	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

ChemWatch Hazard Ratings

		Min	Max	
Flammability	4			
Toxicity	1			0 = Minimum
Body Contact	2		1	1 = Low
Reactivity	0			2 = Moderate
Chronic	4			3 = High 4 = Extreme

Classification ^[1]	Specific Target Organ Toxicity - Repeated Exposure Category 2, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 1, Aerosols Category 1	
Legend:	. Classified by Chernwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
Determined by Chemwatch using GHS/HSNO criteria	2.1.2A, 6.3A, 6.4A, 6.8B, 6.9B, 9.1A	

Label elements

Hazard pictogram(s)	
Signal word	Danger

Hazard statement(s)

H373	May cause damage to organs through prolonged or repeated exposure.	
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H361	Suspected of damaging fertility or the unborn child.	
H410	Very toxic to aquatic life with long lasting effects.	
H222+H229	29 Extremely flammable aerosol. Pressurized container: may burst if heated.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P260	Do not breathe dust/fume.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.		
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P314	Get medical advice/attention if you feel unwell.		
P337+P313	If eye irritation persists: Get medical advice/attention.		
P391	Collect spillage.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap.		
P332+P313	If skin irritation occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
108-88-3	20-35	toluene	
142-82-5	15-25	n-heptane	
110-82-7	3-10	cyclohexane	
111-65-9	1-5	n-octane	
106-97-8.	15-30	butane	
74-98-6	3-10	propane	
Legend:	 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available 		

SECTION 4 First aid measures

Description of first aid measur Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay.
	 Transport to nospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable.

Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable.
Ingestion	 Not considered a normal route of entry. Generally not applicable. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should

- be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.

• After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

- Following acute or short term repeated exposures to toluene:
- Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10.
- Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which
- represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours.
- Primary threat to life from ingestion and/or inhalation is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
o-Cresol in urine	0.5 mg/L	End of shift	В
Hippuric acid in urine	1.6 g/g creatinine	End of shift	B, NS
Toluene in blood	0.05 mg/L	Prior to last shift of workweek	

NS: Non-specific determinant; also observed after exposure to other material

B: Background levels occur in specimens collected from subjects NOT exposed

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2
LARGE FIRE:
Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Advice for firefighters	
	Alert Fire Brigade and tell them location and nature of hazard.
	 May be violently or explosively reactive.
Fire Fighting	Wear breathing apparatus plus protective gloves.
Fire Fighting	Prevent, by any means available, spillage from entering drains or water course.
	If safe, switch off electrical equipment until vapour fire hazard removed.
	Use water delivered as a fine spray to control fire and cool adjacent area.

	 DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: , acroon monoxide (CO) , other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of all upprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. May be violently or explosively reactive. Wear full body clothing with breathing apparatus. Prevent by any means available, spillage from entering drains and water-courses. Consider evacuation. Shut off all possible sources of ignition and increase ventilation. No smoking or naked lights within area. Use extreme caution to prevent violent reaction. Stop leak only if safe to so do. Water spray or fog may be used to disperse vapour. DO NOT enter confined space where gas may have collected. Keep area clear until gas has dispersed. Remove leaking cylinders to a safe place. Fit vent pipes. Release pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Tire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Alex if safe to do so. Water protective clothing, safety glasses, dust mask, gloves.

Flush spill area with water.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air should be work personnel entering a vessel or working on contaminated process equipment to prevent skin contaminated materials in a wet state. (<i>TEXACO</i>) Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. Do NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Do NOT incinerate or puncture aerosol cans. Do NOT enter dynohuments, exposed food utonsils. Avoid smoking, naked lights or goniton sources. Do NOT incinerate or puncture aerosol cans. Do NOT incinerate or puncture aerosol cans. Avoid physical d
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Store away from incompatible materials.

Conditions for safe storage, including any incompatibilities

Suitable container	Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	 Toluene: reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane is incompatible with bis-toluenediazo oxide attacks some plastics, rubber and coatings may generate electrostatic charges, due to low conductivity, on flow or agitation. Low molecular weight alkanes: May react vith oxidising materials, nickel carbonyl in the presence of oxygen, heat. Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens may generate electrostatic charges, due to low conductivity, on flow or agitation. Avoid flame and ignition sources Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes wil

oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen

- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.

Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds
- Butane/ isobutane
 - reacts violently with strong oxidisers
 - reacts with acetylene, halogens and nitrous oxides
 - is incompatible with chlorine dioxide, conc. nitric acid and some plastics
- may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour.
- Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C)
- Cyclohexane
- reacts violently with strong oxidisers, nitrogen tetraoxide

hav generate electrostatic charges, due to low conductivity, following flow or agitation

Propane:

reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.

- liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	toluene	Toluene (Toluol)	50 ppm / 188 mg/m3	Not Available	Not Available	(skin)-Skin absorption
New Zealand Workplace Exposure Standards (WES)	n-heptane	Heptane (n-Heptane)	400 ppm / 1640 mg/m3	2050 mg/m3 / 500 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	cyclohexane	Cyclohexane	100 ppm / 350 mg/m3	1050 mg/m3 / 300 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	n-octane	Octane	300 ppm / 1400 mg/m3	1750 mg/m3 / 375 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	butane	Butane	800 ppm / 1900 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	propane	Propane	Not Available	Not Available	Not Available	Simple asphyxiant - may present an explosion hazard

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3	
toluene	Not Available	Not Available		Not Available	
n-heptane	500 ppm	830 ppm		5000* ppm	
cyclohexane	300 ppm	1700* ppm 10		10000** ppm	
n-octane	230 ppm	385 ppm 50		5000** ppm	
butane	Not Available	Not Available		Not Available	
propane	Not Available	Not Available		Not Available	
Ingredient	Original IDLH		Revised IDLH		
toluene	500 ppm		Not Available		
n-heptane	750 ppm	750 ppm		Not Available	
cyclohexane	1,300 ppm	1,300 ppm		Not Available	
n-octane	1,000 ppm		Not Available		
butane	Not Available		1,600 ppm		
propane	2,100 ppm		Not Available		

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health: LOD: Limit of detection Toxic endpoints have also been identified as: D = Developmental; R = Reproductive; TC = Transplacental carcinogen

Jankovic J., Drake F.: A Screening Method for Occupational Reproductive

American Industrial Hygiene Association Journal 57: 641-649 (1996)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550 As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested
- For cyclohexane:

Odour Threshold Value: 784 ppm (detection)

NOTE: Detector tubes for cyclohexane, measuring in excess of 100 ppm are commercially available.

The recommended TLV-TWA represents the borderline of irritation but takes into account the practical difficulties of achieving lower values in the workplace. Whether serious or long-lasting consequences result from exposure at 300 ppm or whether humans become narcosed or fatigued remains to be established. The present value is thought to be a satisfactory bench-mark until further studies are made.

Odour Safety Factor(OSF)

OSF=4 (CYCLOHEXANE)

for heptane (all isomers)

The TLV-TWA is protective against narcotic and irritant effects which are greater than those of pentane or n-hexane but less than those of octane. The TLV-TWA applies to all isomers. Inhalation by humans of 1000 ppm for 6 minutes produced slight dizziness. Higher concentrations for shorter periods produce marked vertigo, incoordination and hilarity. Signs of central nervous system depression occur in the absence of mucous membrane irritation. Brief exposures to high levels (5000 ppm for 4 minutes) produce nausea, loss of appetite and a "gasoline-like" taste in the mouth that persists for many hours after exposure ceases

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF)

OSF=0.22 (n-BUTANE)

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known.

Odour Safety Factor(OSF) OSF=17 (TOLUENE)

For n-octane:

Odour Threshold Value: 152 ppm (detection), 235 ppm (recognition)

The TLV-TWA is thought to be protective against narcotic effects produced at higher concentrations. Odour Safety Factor(OSF) OSF=6.3 (n-OCTANE) For propane

Odour Safety Factor(OSF) OSF=0.16 (PROPANE)

Exposure controls

	Type of Contaminant:	Speed:			
	Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the circulating air required to effectively remove the contaminant.	capture velocities" of fresh			
	Provide adequate ventilation in warehouse or closed storage areas.				
	General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respin obtain adequate protection.	ator. Correct fit is essential to			
	Employers may need to use multiple types of controls to prevent employee overexposure.				
controls	ventilation system must match the particular process and chemical or contaminant in use.				
Appropriate engineering					
	Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker	and ventilation that strategically			
	Process controls which involve changing the way a job activity or process is done to reduce the risk.				
	be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:				
	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can				
	could require increased ventilation and/or protective gear				
	CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of cor	centrated atmosphere may occu			
	article, may be released to the environment.	ere substances, ibunu in the			
	Articles or manufactured items, in their original condition, generally don't require engineering controls during ha Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations wh				

	aerosols, (released at low velocity into zone of active gene	eration)	0.5-1 m/s
	direct spray, spray painting in shallow booths, gas discharg	ge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
	Within each range the appropriate value depends on:		
	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
	3: Intermittent, low production.	3: High production, heavy use	
	4: Large hood or large air mass in motion	4: Small hood-local control only	
	Simple theory shows that air velocity falls rapidly with distance with the square of distance from the extraction point (in simpl accordingly, after reference to distance from the contaminatir 1-2 m/s (200-400 f/min.) for extraction of solvents generated considerations, producing performance deficits within the ext factors of 10 or more when extraction systems are installed of	ble cases). Therefore the air speed at the extraction ng source. The air velocity at the extraction fan, for in a tank 2 meters distant from the extraction point. traction apparatus, make it essential that theoretical	point should be adjusted, example, should be a minimum o Other mechanical
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact I the wearing of lenses or restrictions on use, should be cr and adsorption for the class of chemicals in use and an a their removal and suitable equipment should be readily a remove contact lens as soon as practicable. Lens should a clean environment only after workers have washed har national equivalent] Close fitting gas tight goggles DO NOT wear contact lenses. Contact lenses may pose a special hazard; soft contact I the wearing of lens or restrictions on use, should be creat adsorption for the class of chemicals in use and an accor removal and suitable equipment should be readily availa contact lens as soon as practicable. Lens should be rem environment only after workers have washed hands thore equivalent] 	reated for each workplace or task. This should inclu account of injury experience. Medical and first-aid p available. In the event of chemical exposure, begin of d be removed at the first signs of eye redness or irrit inds thoroughly. [CDC NIOSH Current Intelligence B lenses may absorb and concentrate irritants. A writt ated for each workplace or task. This should include punt of injury experience. Medical and first-aid perso able. In the event of chemical exposure, begin eye in noved at the first signs of eye redness or irritation - le	de a review of lens absorption ersonnel should be trained in aye irrigation immediately and tation - lens should be removed i ulletin 59], [AS/NZS 1336 or en policy document, describing a review of lens absorption and nnel should be trained in their rigation immediately and remove
		ne product.	
Skin protection	No special equipment required due to the physical form of the See Hand protection below	e product.	
Skin protection Hands/feet protection		ntities. gloves. potwear.	
	See Hand protection below No special equipment needed when handling small quan OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber g For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety fo	ntities. gloves. potwear.	

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

COLORPAK PRO SERIES AEROSOL WAX & GREASE REMOVER

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NATURAL RUBBER	С
NEOPRENE	С
NEOPRENE/NATURAL	С

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2
up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or

NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final

selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear, aerosol		
Physical state	article	Relative density (Water = 1)	0.68
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	431
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	-81	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of
Inhaled	individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the
iiiiaioa	irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens,

hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respiratory protection not normally required due to the physical form of the product. Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Choopenn exception by major the segments of the stress incoming official besting and exact in early and the set is all official distribution. In action with an aid is analytic to be a segment of protocome processes. In all official incoming on the set is protocome processes. The set is the monotomy distress of manage which may have there best the set is all official incoming on the set is protocome processes. The set is the monotomy distress of manage which may have there best the set is all official incoming on the set is protocome processes. The set is all official incoming on the set is protocome processes of the major set is all official income protocome processes. The set is all official incoming on the set is protocome processes. The set is all official income protocome processes of the set is set in the set is all official income protocome prot	occur.
Chronic No deats or treatment related signs of toxicity were observed in tist exposed to prive weights and twice and the deats and the individual goal evels, did not show any significant carcinogenic activity indicating that the interports and the to toron of an abbre been indown to produce a species pacific, sex hormonal dependent kidney lesion in male rats from repeated or all or inhalidits building the occupational exposure to the gas is by inhaliants. The twice and the occupational exposure to the gas is by inhaliant or occupational exposure. Ataxia, inccordination of a labbre of cocupational exposure to full gas is by inhaliant. Chronic toluene habituation occurs following intentional abuse (glue snifting) of rom tos mechanism unique the hands and feel (as a consequence of fiftus ecrelinal atory). Analache, abnormal specer, transient memory less, convulse drouts and supreventicular devices and the chronic abuse. Peripheral netwo damage, enceptabaty, gluta atory and a supreventicular davis, and and page in cases of accupation abuse fields on anongst toluene exoces 2.2 are appear in cases of accupation at abuse in abuse habe been containing patient extreme containing patients. Previous super weights and the advise and patients weights and the advise and patients weights and the advise and the advise and the advise advise and the advise advise and the advise advise advise advise advise a	e caused by h damage may two-year) toxicity organs or tion and/or emities, weight rocarbons, has s and izene) and hepatic ermatoses. troleum refinery an association lies have been hydrogen atoms, carbon solvents s) and aromatics ave similar cause chemical tation at exposure
AEROSOL WAX & GREASE REMOVER Investment of the second	nale rats) was ct reproduction or nic activity is tumorigenic gely negative in a of this product lation exposure. ue to the male rat. tion and tremors of lsions, coma, o deafness and rolyte Although toluene ac and ventricular uggestions that VS) depression is 5.5 %. Amongst test results could ions indicative of ath or delayed ve suffered from I may produce
AEROSOL WAX & GREASE REMOVER Interference Not Available Not Available Interference IRRITATION Interference IRRITATION Dermal (rabbit) LD50: 12124 mg/kg ^[2] Eye (rabbit): 2mg/24h - SEVERE Inhalation(Rat) LC50; >13350 ppm4h ^[2] Eye (rabbit): 0.87 mg - mild Oral (Rat) LD50; 636 mg/kg ^[2] Eye (rabbit):100 mg/30sec - mild Oral (Rat) LD50; 636 mg/kg ^[2] Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Interference Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Dermal (rabbit) LD50: 12124 mg/kg ^[2] Eye (rabbit): 2mg/24h - SEVERE Inhalation(Rat) LC50; >13350 ppm4h ^[2] Eye (rabbit): 0.87 mg - mild Oral (Rat) LD50; 636 mg/kg ^[2] Eye (rabbit):100 mg/30sec - mild Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Dermal (rabbit) LD50: 12124 mg/kg ^[2] Eye (rabbit): 2mg/24h - SEVERE Inhalation(Rat) LC50; >13350 ppm4h ^[2] Eye (rabbit): 0.87 mg - mild Oral (Rat) LD50; 636 mg/kg ^[2] Eye (rabbit):100 mg/30sec - mild Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Inhalation(Rat) LC50; >13350 ppm4h ^[2] Eye (rabbit):0.87 mg - mild Oral (Rat) LD50; 636 mg/kg ^[2] Eye (rabbit):100 mg/30sec - mild Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Oral (Rat) LD50; 636 mg/kg ^[2] Eye (rabbit):100 mg/30sec - mild Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1] Skin: adverse effect observed (irritating) ^[1]	
toluene Eye: adverse effect observed (irritating) ^[1] Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Skin (rabbit):500 mg - moderate Skin: adverse effect observed (irritating) ^[1]	
Skin: adverse effect observed (irritating) ^[1]	
TOXICITY IRRITATION	
n-heptane Dermal (rabbit) LDs0: >2000 mg/kg ⁽¹⁾ Eye: no adverse effect observed (not irritating) ^[1] Inhalation(Rat) LC50; >29.29 mg/l4h ^[1] Skin: no adverse effect observed (not irritating) ^[1]	

	Oral (Rat) LD50; >5000 mg/kg ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
cyclohexane	Inhalation(Rat) LC50; >5540 ppm4h ^[1]	Skin(rabbit): 1548 mg/48hr - mild
	Oral (Rat) LD50; 12705 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
n-octane	Inhalation(Rat) LC50; >24.88 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50; >5000 mg/kg ^[1]	
	тохісіту	IRRITATION
butane	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available
	тохісіту	IRRITATION
propane	Inhalation(Rat) LC50; >13023 ppm4h ^[1]	Not Available
Legend:	1. Value obtained from Europe ECHA Registered Substan specified data extracted from RTECS - Register of Toxic E	nces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise
	specified data extracted north TTEOS - Tregister of Toxic E	

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia, RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Data demonstrate that during inhalation exposure aromatic hydrocarbons undergo substantial partitioning into adipose tissues. Following cessation of exposure, the level of aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to COLORPAK PRO SERIES bioaccumulate in the body. Selective partitioning of the aromatic hydrocarbons into the non-adipose tissues is unlikely. No data is available **AEROSOL WAX & GREASE** regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern occurring REMOVER with inhalation exposure. Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation to glycine, sulfation or glucuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylbenzenes and consists of: (1) oxidation of one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a carboxylic acid; (3) the carboxylic acid is then conjugated with glycine to form a hippuric acid. The minor metabolites can be expected to consist of a complex mixture of isomeric triphenols, the sulfate and glucuronide conjugates of dimethylbenzyl alcohols, dimethylbenzoic acids and dimethylhippuric acids. Consistent with the low propensity for bioaccumulation of aromatic hydrocarbons, these substances are likely to be significant inducers of their own metabolism. The predominant route of excretion of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolized parent compound, or urinary excretion of its metabolites. When oral administration occurs, there is little exhalation of unmetabolized these hydrocarbons, presumably due to the first pass effect in the liver. Under these circumstances, urinary excretion of metabolites is the dominant route of excretion. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of TOLUENE dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. CYCLOHEXANE Bacteria mutagen N-OCTANE Oral (rat) LD50: 5630 mg/kg* [CCINFO] Nil reported PROPANE No significant acute toxicological data identified in literature search.

For toluene: Acute Toxicity

COLORPAK PRO SERIES

REMOVER & TOLUENE

AEROSOL WAX & GREASE

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.

Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death

Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.

Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers

ľ

COLORPAK PRO SERIES AEROSOL WAX & GREASE REMOVER

	kidneys, brain and urinary bladder. The no-observed- observed-adverse effect level (LOAEL) for the study w Developmental/Reproductive Toxicity Exposures to high levels of toluene can result in adve of toluene can also adversely effect the developing of Humans - Variable growth, microcephaly, CNS dysfur delay were seen in three children exposed to toluene Animals - Sternebral alterations, extra ribs, and missi during days 9-14 of gestation. Two of the dams died to 1-21 of gestation. No maternal deaths or toxicity occu were exposed to 500 or 1500 mg/m3 toluene continue of exposure, however none died at 500 mg/m3. Decre malformations or anomalies between the treated and Absorption - Studies in humans and animals have de Absorption through the skin is estimated at about 1% Dermal absorption is expected to be higher upon expr Distribution - In studies with mice exposed to radiola marrow, spinal nerves, spinal cord, and brain white m toluene has generally been found in adipose tissue, o Metabolism - The metabolites of inhaled or ingested oxidation results in the formation of benzaldehyde ano glucuronic acid to form benzoyl glucuronide. o-cresol	bolite of toluene, was given as 4 g/L c /chronic toxicity of toluene are the ner s of 105 mg/kg/day for 28 days. Toluei ostration, hypoactivity, ataxia, piloered tweights were also increased at this d adverse effect level (NOAEL) for the s vas 625 mg/kg (446 mg/kg/day) . rse effects in the developing human for fspring in laboratory animals. nction, attentional deficits, minor crani- in utero as a result of maternal solven ing tails were reported following treatm furing the exposure. Another group of rred, however, minor skeletal retardati ously during days 6-13 of pregnancy. A sased foetal weight was reported, but i control offspring. emonstrated that toluene is readily abs of that absorbed by the lungs when ex- beled toluene by inhalation, high level atter. Lower levels of radioactivity wer ther tissues with high fat content, and toluene include benzyl alcohol resultir d benzoic acid. The latter is conjugate and p-cresol formed by ring hydroxyla rough the urine as hippuric acid. The	ompared to a normal level of 0.6 g/L vous system, liver, and kidney. Depressed immune he in corn oil administered to F344 male and female tion, lachrymation, excess salivation, and body lose and histopathologic lesions were seen in the liver, tudy was 312 mg/kg (223 mg/kg/day) and the lowest- betus. Several studies have indicated that high levels ofacial and limb abnormalities, and developmental t abuse before and during pregnancy hent of rats with 1500 mg/m3 toluene 24 hours/day rats received 1000 mg/m3 toluene 24 hours/day rats received 1000 mg/m3 toluene 24 hours/day rats and direct the high dose during the first 24 hours there were no differences in the incidences of skeletal sorbed via the lungs and the gastrointestinal tract. cposed to toluene vapor. is limited by the rapid evaporation of toluene . is of radioactivity were present in body fat, bone e present in blood, kidney, and liver. Accumulation of in highly vascularised tissues . ig from the hydroxylation of the methyl group. Further d with glycine to yield hippuric acid or reacted with tion are considered minor metabolites excretion of benzoyl glucuronide accounts for 10-20%,
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	¥	Reproductivity	¥
Serious Eye Damage/Irritation	¥	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓

Mutagenicity

×

 $\pmb{\times}$ – Data either not available or does not fill the criteria for classification $\pmb{\vee}$ – Data available to make classification Legend:

Aspiration Hazard 🗙

SECTION 12 Ecological information

Toxicity

COLORPAK PRO SERIES	Endpoint	Test Duration (hr)	Species	Value	Source
AEROSOL WAX & GREASE REMOVER	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	3.78mg/L	5
toluene	NOEC(ECx)	168h	Crustacea	0.74mg/L	5
	LC50	96h	Fish	5-35mg/l	4
	EC50	96h	Algae or other aquatic plants	>376.71mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	0.64mg/l	2
n-heptane	NOEC(ECx)	504h	Crustacea	0.17mg/l	2
	LC50	96h	Fish	3446.8mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1344h	Fish	31-102	7
	EC50	72h	Algae or other aquatic plants	3.428mg/l	2
cyclohexane	EC50	48h	Crustacea	0.9mg/l	2
	EC50(ECx)	48h	Crustacea	0.9mg/l	2
	LC50	96h	Fish	4.53mg/l	2
	EC50	96h	Algae or other aquatic plants	2.17mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
n-octane	EC50	48h	Crustacea	0.3mg/l	2
	NOEC(ECx)	504h	Crustacea	0.17mg/l	2

	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
butane	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
			openie	Value	000100
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
propane	EC50(ECx) LC50		•		
propane	. ,	96h	Algae or other aquatic plants	7.71mg/l	2

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water Oils of any kind can cause:

+ drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility

- ۲ lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and

adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. **Biodegradation**:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL . Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L.was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lOEC of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For n-heptane: log Kow : 4.66 Koc : 2400-8100 Half-life (hr) air : 52.8 Half-life (hr) H2O surface water : 2.9-312 Henry's atm m3 /mol: 2.06 BOD 5 if unstated: 1.92 COD : 0.06 BCF : 340-2000 log BCF : 2.53-3.31 Environmental fate:

Photolysis or hydrolysis of n-heptane are not expected to be important environmental fate processes. Biodegradation of n-heptane may occur in soil and water, however volatilisation and adsorption are expected to be more important fate processes. A high Koc (2400-8200) indicates n-heptane will be slightly mobile to immobile in soil. In aquatic systems n-heptane may partition from the water column to organic matter in sediments and suspended solids. The bioconcentration of n-heptane may be important in aquatic environments. the Henry's Law constant suggests rapid volatilisation from environmental waters and surface soils. The volatilisation half-lives from a model river and a model pond (the latter considers the effect of adsorption) have been estimated to be 2.9 hr and 13 days, respectively.

n-Heptane is expected to exist entirely in the vapour phase in ambient air. Reactions with photochemically produced hydroxyl radicals in the atmosphere have been shown to be important (estimated half-life of 2.4 days calculated from its rate constant of 7.15x10-12 cu cm/molecule-sec at 25 deg C). Data also suggests that night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight

An estimated BCF of 2,000 using log Kow suggests the potential for bioconcentration in aquatic organisms is very high. Based on 100% degradation after 4 days in water inoculated with gasoline contaminated soil and 100% degradation after 25 days in water inoculated with activated sewage sludge, biodegradation is expected to be an important fate process for n-heptane in water.

Ecotoxicity

Fish LC50 (48 h): goldfish (Carrasius auratus) 4 mg/l; golden orfe (Idus melanotus) 2940 mg/l; western mosquitofish (Gambusia affinis) 4924 mg/l

Daphnia LC50 (24 h): >10 mg/l Daphnia EC50 (96 h): 82 mg/l (immobilisation) Opposum shrimp (Mysidopsis bahia) LC50 (96 h): 0.1 mg/l Snail EC50 (96 h): 472 mg/l For butane: log Kow: 2.89 Koc: 450-900

BCF: 1.9

Environmental Fate

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilisation from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported.

Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane.

For cyclohexanes: log Kow: 3.44 Water solubility: 54.8 mg/l (25 C) Vapour pressure 97.6 mm Hg (25 C) Henry's Law Constant: 0.193 atm-m3/mole Koc : 480 Half-life (hr) air : 6-52 Half-life (hr) H2O surface water : 2 ThOD : 3.42 BCF : 242

Environmental fate:

Terrestrial fate: If released on land cyclohexane will be lost by volatilisation and should leach into the ground. Cyclohexane is resistant to biodegradation but may slowly biodegrade in the presence of other hydrocarbons that are themselves biodegraded.

Aquatic fate: Volatilisation from water(estimated half-life 2 hours in a model river) should be the most important fate process in aquatic systems.

Atmospheric fate: In the atmosphere, cyclohexane will degrade by reaction with photochemically produced hydroxyl radicals (half-life 52 hours). The half-life is much shorter under photochemical smog conditions with half-lives as low as 6 hours being reported.

Biodegradation: Cyclohexanes are highly resistant to biodegradation and are catabolised chiefly by cooxidation. Thus they do not support growth of the degrading organism

themselves but are metabolised during the course of the microorganisms growth on another, usually similar substrate. Initial attack involves oxygenation and subsequent ring cleavage to simply degradable acids. 10% degradation in 12 hours was reported by microorganisms isolated from a brackish creek in an area usually exposed to oil. **Abiotic degradation**: In the atmosphere cyclohexane reacts with photochemically produced hydroxyl radicals with a half-life of 52 hours based on a recommended rate constant of

7.38 x 10-12 cm3mol-sec and a hydroxyl radical concentration of 5 x 10+5 cm3/sec. Photodegradation is much faster in the presence of nitrogen oxides (photochemical smog conditions).

Compared with other solvents, the reactivity of cyclohexane (measured by ozone forming potential) is relatively low (2 on a scale of 5). Products of reaction are cyclohexanone, cyclohexyl nitrate and unidentified carbonyl compounds resulting from ring cleavage.

Cyclohexane does not have any chromophores that absorb UV radiation at >290 nm so should not be subject to direct photolysis.

Bioconcentration Factor (BCF): Using log Kow a BCF of 242 can be estimated; some bioconcentration is expected. Significant risk of bioaccumulation is likely

Soil adsorption/ mobility: The estimated Koc for cyclohexane (from its water solubility) is 480 indicating moderate soil adsorptivity. Test results show a small interaction with soil adsorbents and adsorptivity was only casually related to the organic carbon content of sediment. Adsorption constants for cyclohexane in three sediments ranged from 13 to 61.1 and 0.6 (mg/g/ mg/l) in montmorillonite and illite, respectively.

Volatilisation from water/ soil. The very high Henry's law constant indicates rapid volatilisation from water with the rate being controlled by diffusion through the liquid phase. A volatilisation half-life from a model river 1 m deep with a 1 m/sec current and a 3 m/sec wind is calculated to be 2.8 hours. In view of the high vapour pressure and moderate adsorption to soil, volatilisation from soil and surfaces should be considerable.

Ecotoxicity:

Fish LC50 (96 h) Pimephales promelus 4.53 mg/l (flow through); Lepomis macrochirus 34.72 mg/l; Poecilia reticulata 48 mg/l

Daphnia EC50 (48 h): 400 mg/l

Algal EC50 (72 h): Scenedesmus subspicatus >500 mg/l

Photobacterium phosphoreum EC50 (5 min) 85.5 mg/l; (10 min) 93 mg/l For Propane: Koc 460. log

Kow 2.36.

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. For Toluene:

log Kow : 2.1-3; log Koc : 1.12-2.85; Koc : 37-260; log Kom : 1.39-2.89; Half-life (hr) air : 2.4-104; Half-life (hr) H2O surface water : 5.55-528; Half-life (hr) H2O ground : 168-2628; Half-life (hr) H2O ground : 168-2628; Half-life (hr) soil : <48-240; Henry's Pa m3 /mol : 518-694; Henry's Pa m3 /mol : 5.94; E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%; ThOD - 3.13 ; BCF - 1.67-380; log BCF - 0.22-3.28.

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal. Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

Persistence and degradability

Ingredient	Persistence: Water/Soil Persistence: Air	
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
n-heptane	LOW	LOW
cyclohexane	HIGH (Half-life = 360 days)	LOW (Half-life = 3.63 days)
n-octane	LOW	LOW
butane	LOW	LOW
propane	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
toluene	LOW (BCF = 90)
n-heptane	HIGH (LogKOW = 4.66)
cyclohexane	LOW (BCF = 242)
n-octane	HIGH (LogKOW = 5.18)
butane	LOW (LogKOW = 2.89)
propane	LOW (LogKOW = 2.36)

Ingredient	Mobility
toluene	LOW (KOC = 268)
n-heptane	LOW (KOC = 274.7)
cyclohexane	LOW (KOC = 165.5)
n-octane	LOW (KOC = 506.7)
butane	LOW (KOC = 43.79)
propane	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods	
Product / Packaging disposal	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

(1) a blast overpressure of more than 9 kPa; or

(2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 Transport information

Labels Required	
Marine Pollutant	
HAZCHEM	Not Applicable

Land transport (UN)

UN number	1950	
UN proper shipping name	AEROSOLS	
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable	
Packing group	Not Applicable	
Environmental hazard	Environmentally hazardous	
Special precautions for user	Special provisions 63; 190; 277; 327; 344; 381 Limited quantity 1000ml	

Air transport (ICAO-IATA / DGR)

UN number	1950		
UN proper shipping name	Aerosols, flammable		
	ICAO/IATA Class	2.1	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	

	ERG Code 10L		
Packing group	Not Applicable		
Environmental hazard	Environmentally hazardous		
	Special provisions	A145 A167 A802	
Special precautions for user	Cargo Only Packing Instructions	203	
	Cargo Only Maximum Qty / Pack	150 kg	
	Passenger and Cargo Packing Instructions	203	
	Passenger and Cargo Maximum Qty / Pack	75 kg	
	Passenger and Cargo Limited Quantity Packing Instructions	Y203	
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G	

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)		2.1 Not Applicable	
Packing group	Not Applicable		
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number Special provisions Limited Quantities		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
toluene	Not Available
n-heptane	Not Available
cyclohexane	Not Available
n-octane	Not Available
butane	Not Available
propane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
toluene	Not Available
n-heptane	Not Available
cyclohexane	Not Available
n-octane	Not Available
butane	Not Available
propane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002515	Aerosols Flammable Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

toluene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

n-heptane is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls	New Zealand Inventory of Chemicals (NZIoC)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals	New Zealand Workplace Exposure Standards (WES)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data		
cyclohexane is found on the following regulatory lists		
New Zealand Approved Hazardous Substances with controls	New Zealand Inventory of Chemicals (NZIoC)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals	New Zealand Workplace Exposure Standards (WES)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data		
n-octane is found on the following regulatory lists		
New Zealand Approved Hazardous Substances with controls	New Zealand Inventory of Chemicals (NZIoC)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals	New Zealand Workplace Exposure Standards (WES)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data		
butane is found on the following regulatory lists		
Chemical Footprint Project - Chemicals of High Concern List	New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification	
New Zealand Approved Hazardous Substances with controls	of Chemicals - Classification Data	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification	New Zealand Inventory of Chemicals (NZIoC)	
of Chemicals	New Zealand Workplace Exposure Standards (WES)	
propane is found on the following regulatory lists		
New Zealand Approved Hazardous Substances with controls	New Zealand Inventory of Chemicals (NZIoC)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals	New Zealand Workplace Exposure Standards (WES)	
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data		

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Closed Containers)	Quantity (Open Containers)
2.1.2A	3 000 L (aggregate water capacity)	3 000 L (aggregate water capacity)

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
2.1.2A				1L (aggregate water capacity)

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (toluene; n-heptane; cyclohexane; n-octane; butane; propane)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes

National Inventory	Status
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	29/07/2022
Initial Date	29/07/2022

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.

