# Formula Marketing Limited

Version No: 1.2

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 4

Issue Date: **18/07/2022** Print Date: **18/07/2022** L.GHS.NZL.EN

## SECTION 1 Identification of the substance / mixture and of the company / undertaking

#### **Product Identifier**

| Product name                  | COLORPAK PRO SERIES AEROSOL ACRYLIC GLOSS CLEAR |
|-------------------------------|-------------------------------------------------|
| Chemical Name                 | Not Applicable                                  |
| Synonyms                      | CPA2893; CPS403                                 |
| Proper shipping name          | AEROSOLS                                        |
| Chemical formula              | Not Applicable                                  |
| Other means of identification | Not Available                                   |

### Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack |
|--------------------------|-------------------------------------------------------------------|
|                          |                                                                   |

### Details of the supplier of the safety data sheet

| Registered company name | Formula Marketing Limited                            |  |
|-------------------------|------------------------------------------------------|--|
| Address                 | B Cryers Road, East Tamaki Auckland 2013 New Zealand |  |
| Telephone               | 09 273 3600                                          |  |
| Fax                     | Not Available                                        |  |
| Website                 | www.formula.co.nz                                    |  |
| Email                   | sales@formula.co.nz                                  |  |

### Emergency telephone number

| Association / Organisation        | NZ Poison Centre |  |
|-----------------------------------|------------------|--|
| Emergency telephone<br>numbers    | 0800 764 766     |  |
| Other emergency telephone numbers | Not Available    |  |

### **SECTION 2 Hazards identification**

### Classification of the substance or mixture

### Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

#### ChemWatch Hazard Ratings

|              | Min | Max |                         |
|--------------|-----|-----|-------------------------|
| Flammability | 4   |     |                         |
| Toxicity     | 2   |     | 0 = Minimum             |
| Body Contact | 2   | 1   | 1 = Low                 |
| Reactivity   | 0   |     | 2 = Moderate            |
| Chronic      | 3   |     | 3 = High<br>4 = Extreme |

| Classification <sup>[1]</sup>                      | Specific Target Organ Toxicity - Repeated Exposure Category 2, Serious Eye Damage/Eye Irritation Category 2, Reproductive Toxicity Category 2, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Aerosols Category 1 |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legend:                                            | 1. Classified by Chernwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI                                                                                                                           |
| Determined by Chemwatch<br>using GHS/HSNO criteria | 2.1.2A, 6.4A, 6.5B (contact), 6.8B, 6.9B, 9.1C                                                                                                                                                                                                                        |

### Label elements



# Hazard statement(s)

| H373      | May cause damage to organs through prolonged or repeated exposure.       |
|-----------|--------------------------------------------------------------------------|
| H319      | Causes serious eye irritation.                                           |
| H361      | Suspected of damaging fertility or the unborn child.                     |
| H317      | May cause an allergic skin reaction.                                     |
| H412      | Harmful to aquatic life with long lasting effects.                       |
| H222+H229 | Extremely flammable aerosol. Pressurized container: may burst if heated. |

## Precautionary statement(s) Prevention

| P201 | Obtain special instructions before use.                                                        |
|------|------------------------------------------------------------------------------------------------|
| P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. |
| P211 | Do not spray on an open flame or other ignition source.                                        |
| P251 | Do not pierce or burn, even after use.                                                         |
| P260 | Do not breathe dust/fume.                                                                      |
| P280 | Wear protective gloves, protective clothing, eye protection and face protection.               |
| P273 | Avoid release to the environment.                                                              |
| P264 | Wash all exposed external body areas thoroughly after handling.                                |
| P272 | Contaminated work clothing should not be allowed out of the workplace.                         |
|      |                                                                                                |

# Precautionary statement(s) Response

| P308+P313      | IF exposed or concerned: Get medical advice/ attention.                                                                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| P302+P352      | IF ON SKIN: Wash with plenty of water and soap.                                                                                  |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P314           | Get medical advice/attention if you feel unwell.                                                                                 |
| P333+P313      | If skin irritation or rash occurs: Get medical advice/attention.                                                                 |
| P337+P313      | If eye irritation persists: Get medical advice/attention.                                                                        |
| P362+P364      | Take off contaminated clothing and wash it before reuse.                                                                         |

## Precautionary statement(s) Storage

| P405      | Store locked up.                                                             |
|-----------|------------------------------------------------------------------------------|
| P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. |

## Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

# **SECTION 3 Composition / information on ingredients**

#### Substances

See section below for composition of Mixtures

### Mixtures

| CAS No       | %[weight]     | Name                                                                                                                                                                                                     |
|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 67-64-1      | 35-50         | acetone                                                                                                                                                                                                  |
| 763-69-9     | 3-10          | ethyl-3-ethoxypropionate                                                                                                                                                                                 |
| 108-88-3     | 3-8           | toluene                                                                                                                                                                                                  |
| 78-93-3      | 3-8           | methyl ethyl ketone                                                                                                                                                                                      |
| 123-86-4     | 3-8           | n-butyl acetate                                                                                                                                                                                          |
| 108-65-6     | 3-8           | propylene glycol monomethyl ether acetate. alpha-isomer                                                                                                                                                  |
| 108-10-1     | 1-5           | methyl isobutyl ketone                                                                                                                                                                                   |
| 27138-31-4   | 1-5           | dipropylene glycol dibenzoate                                                                                                                                                                            |
| 67-63-0      | 1-5           | isopropanol                                                                                                                                                                                              |
| 41556-26-7   | <1            | bis(1.2.2.6.6-pentamethyl-4-piperidyl)sebacate                                                                                                                                                           |
| 104810-48-2* | <1            | Poly(oxy-1.2-ethanediyl)alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1.1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega<br>hydroxy.                                                                          |
| 104810-47-1* | <1            | Poly(oxy-1.2-ethanediyl)alpha[3-[3-(2H-benzotriazol-2-yl)-5-(1.1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1.1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]- |
| 1330-20-7    | <1            | xylene                                                                                                                                                                                                   |
| 106-97-8.    | 12-25         | butane                                                                                                                                                                                                   |
| 74-98-6      | 4-10          | propane                                                                                                                                                                                                  |
| Legend:      | 1. Classified | by Chernwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI;                                                                           |

4. Classification drawn from C&L; \* EU IOELVs available

### **SECTION 4 First aid measures**

| Eye Contact  | <ul> <li>If aerosols come in contact with the eyes:</li> <li>Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.</li> <li>Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.</li> <li>Transport to hospital or doctor without delay.</li> <li>Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.</li> <li>Generally not applicable.</li> </ul>                                             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | If solids or aerosol mists are deposited upon the skin: <ul> <li>Flush skin and hair with running water (and soap if available).</li> <li>Remove any adhering solids with industrial skin cleansing cream.</li> <li>DO NOT use solvents.</li> <li>Seek medical attention in the event of irritation.</li> <li>Generally not applicable.</li> </ul>                                                                                                                                                                                                                                                           |
| Inhalation   | <ul> <li>If aerosols, fumes or combustion products are inhaled:</li> <li>Remove to fresh air.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor.</li> <li>Generally not applicable.</li> </ul> |
| Ingestion    | <ul> <li>Not considered a normal route of entry.</li> <li>Generally not applicable.</li> <li>If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |

### Indication of any immediate medical attention and special treatment needed

#### For petroleum distillates

• In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.

Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.

- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.

• After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

For acute or short term repeated exposures to acetone:

- Symptoms of acetone exposure approximate ethanol intoxication.
- About 20% is expired by the lungs and the rest is metabolised. Alveolar air half-life is about 4 hours following two hour inhalation at levels near the Exposure Standard; in overdose, saturable metabolism and limited clearance, prolong the elimination half-life to 25-30 hours.
- There are no known antidotes and treatment should involve the usual methods of decontamination followed by supportive care.
- [Ellenhorn and Barceloux: Medical Toxicology]

#### Management:

Measurement of serum and urine acetone concentrations may be useful to monitor the severity of ingestion or inhalation.

Inhalation Management:

- Maintain a clear airway, give humidified oxygen and ventilate if necessary.
- If respiratory irritation occurs, assess respiratory function and, if necessary, perform chest X-rays to check for chemical pneumonitis.
- Consider the use of steroids to reduce the inflammatory response.
- Treat pulmonary oedema with PEEP or CPAP ventilation.
- Dermal Management:

Remove any remaining contaminated clothing, place in double sealed, clear bags, label and store in secure area away from patients and staff.

- Irrigate with copious amounts of water.
- An emollient may be required.
- Eye Management:
- Irrigate thoroughly with running water or saline for 15 minutes.
- Stain with fluorescein and refer to an ophthalmologist if there is any uptake of the stain.
- Oral Management:

# ► No GASTRIC LAVAGE OR EMETIC

Encourage oral fluids.

Systemic Management:

Determinant

Acetone in urine

- Monitor blood glucose and arterial pH.
- Ventilate if respiratory depression occurs.
- If patient unconscious, monitor renal function.
- Symptomatic and supportive care.

The Chemical Incident Management Handbook:

Guy's and St. Thomas' Hospital Trust, 2000

BIOLOGICAL EXPOSURE INDEX

#### These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Sampling Time Index End of shift 50 mg/L

NS: Non-specific determinant; also observed after exposure to other material for simple esters:

Continued...

Comments

NS

### BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

-----

# ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- + Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

#### EMERGENCY DEPARTMENT

Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.

Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

### **SECTION 5 Firefighting measures**

#### Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
- SMALL FIRE:
- Water spray, dry chemical or CO2
- LARGE FIRE:
- Water spray or fog.

### Special hazards arising from the substrate or mixture

| Fire Incompatibility    | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advice for firefighters |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fire Fighting           | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear breathing apparatus plus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>If safe, switch off electrical equipment until vapour fire hazard removed.</li> <li>Use water delivered as a fine spray to control fire and cool adjacent area.</li> <li><b>DO NOT</b> approach containers suspected to be hot.</li> <li>Cool fire exposed containers from path of fire.</li> <li>Equipment should be thoroughly decontaminated after use.</li> <li>Slight hazard when exposed to heat, flame and oxidisers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fire/Explosion Hazard   | <ul> <li>Liquid and vapour are highly flammable.</li> <li>Severe fire hazard when exposed to heat or flame.</li> <li>Vapour forms an explosive mixture with air.</li> <li>Severe explosion hazard, in the form of vapour, when exposed to flame or spark.</li> <li>Vapour may travel a considerable distance to source of ignition.</li> <li>Heating may cause expansion or decomposition with violent container rupture.</li> <li>Aerosol cans may explode on exposure to naked flames.</li> <li>Rupturing containers may rocket and scatter burning materials.</li> <li>Hazards may not be restricted to pressure effects.</li> <li>May emit acrid, poisonous or corrosive fumes.</li> <li>On combustion, may emit toxic fumes of carbon monoxide (CO).</li> <li>Combustion products include:</li> <li>carbon monoxide (CO)</li> <li>carbon dioxide (CO2)</li> <li>other pyrolysis products typical of burning organic material.</li> <li>Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.</li> <li>Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place.</li> <li>Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard.</li> <li>WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides.</li> </ul> |

# **SECTION 6** Accidental release measures

Personal precautions, protective equipment and emergency procedures See section 8

# Environmental precautions

See section 12

# Methods and material for containment and cleaning up

|              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minor Spills | <ul> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Wear protective clothing, impervious gloves and safety glasses.</li> <li>Shut off all possible sources of ignition and increase ventilation.</li> <li>Wipe up.</li> <li>If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.</li> <li>Undamaged cans should be gathered and stowed safely.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Major Spills | <ul> <li>Clear area of all uprotected personnel and move upwind.</li> <li>Next Emergency Authority and advise them of the location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear full body clothing with breathing apparatus.</li> <li>Prevent by any means available, spillage from entering drains and water-courses.</li> <li>Consider evacuation.</li> <li>Shut off all possible sources of ignition and increase ventilation.</li> <li>No smoking or naked lights within area.</li> <li>Use extreme caution to prevent violent reaction.</li> <li>Stop leak only if safe to so do.</li> <li>Water spray or fog may be used to disperse vapour.</li> <li>DO NOT enter confined space where gas may have collected.</li> <li>Keep area clear until gas has dispersed.</li> <li>Remove leaking cylinders to a safe place.</li> <li>Fit vent pipes. Release pressure under safe, controlled conditions</li> <li>Burn issuing gas at vert pipes.</li> <li>DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.</li> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear breathing aparatus by lus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water courses</li> <li>No smoking, naked lights or ignition sources.</li> <li>Increase venilation.</li> <li>Stop leak if safe to do so.</li> <li>Water spray or go may be used to disperse / absorb vapour.</li> <li>Absorb or cover spill with sand, earth, inert materials or vermiculite.</li> <li>Increase venilation.</li> <li>Stop leak if safe to do so.</li> <li>Water spray or do gan bue used to disperse / absorb vapour.</li> <li>Absorb or cover spill with sand, earth, inert materials or vermiculite.</li> <li>If safe, damaged cans should be place in a container outdoors, away from ignition sources, until pressure has dissipated.</li> <li>Undamaged cans should be place in a container outd</li></ul> |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

## **SECTION 7 Handling and storage**

| Precautions for safe handling<br>Safe handling | Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [ <i>TEXACO</i> ] The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe. |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                | Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                   | <ul> <li>a column of activated alumina.</li> <li>Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.</li> <li>Add inhibitor to any distillate as required.</li> </ul>                                                                                                                                                                                                                              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | <ul> <li>Add initiation to any distingte as required.</li> <li>When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely.</li> </ul>                                                                                                                                                        |
|                   | The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.                                                                                                                                                                                                                                                          |
|                   | <ul> <li>Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.</li> <li>A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides are subject to peroxidation.</li> </ul> |
|                   | <ul> <li>or disposed of before this date.</li> <li>The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.</li> </ul>                                                                                                                                                                                                                                                               |
|                   | Unopened containers received from the supplier should be safe to store for 18 months.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | <ul> <li>Opened containers should not be stored for more than 12 months.</li> <li>Avoid all personal contact, including inhalation.</li> </ul>                                                                                                                                                                                                                                                                                                                                           |
|                   | <ul> <li>Wear protective clothing when risk of exposure occurs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | ▶ Use in a well-ventilated area.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Prevent concentration in hollows and sumps.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | <ul> <li>DO NOT enter confined spaces until atmosphere has been checked.</li> <li>Avoid smoking, naked lights or ignition sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
|                   | <ul> <li>Avoid sinking, have ughts origination sources.</li> <li>Avoid contact with incompatible materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |
|                   | When handling, DO NOT eat, drink or smoke.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | DO NOT incinerate or puncture aerosol cans.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | DO NOT spray directly on humans, exposed food or food utensils.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | <ul> <li>Avoid physical damage to containers.</li> <li>Always wash hands with soap and water after handling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |
|                   | Work clothes should be laundered separately.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Use good occupational work practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Observe manufacturer's storage and handling recommendations contained within this SDS.                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.                                                                                                                                                                                                                                                                                                                                                          |
|                   | Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can                                                                                                                                                                                                                                                                                                                                                       |
|                   | <ul> <li>Store in original containers in approved flammable liquid storage area.</li> <li>DO NOT store in pits, depressions, basements or areas where vapours may be trapped.</li> </ul>                                                                                                                                                                                                                                                                                                 |
|                   | <ul> <li>No smoking, naked lights, heat or ignition sources.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | Keep containers securely sealed. Contents under pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Store away from incompatible materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other information | <ul> <li>Store in a cool, dry, well ventilated area.</li> <li>Avoid storage at temperatures higher than 40 deg C.</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
|                   | <ul> <li>Store in an upright position.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | Protect containers against physical damage.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | Check regularly for spills and leaks.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | <ul> <li>Observe manufacturer's storage and handling recommendations contained within this SDS.</li> <li>Stora guard from incompatible materials</li> </ul>                                                                                                                                                                                                                                                                                                                              |
|                   | Store away from incompatible materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Conditions for safe storage, including any incompatibilities

| Suitable container      | Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards.<br>If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original<br>packaging or something providing a similar level of protection to both the article and the handler.<br>Aerosol dispenser.<br>Check that containers are clearly labelled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage incompatibility | n-Butyl acetate:  reacts with water on standing to form acetic acid and n-butyl alcohol reacts with water on standing to form acetic acid and n-butyl alcohol reacts withewater on standing to form acetic acid and n-butyl alcohol reacts violently with strong oxidisers and potassium tert-butoxide is incompatible with caustics, strong acids and nitrates dissolves rubber, many plastics, resins and some coatings Methyl ethyl ketone: reacts violently with strong oxidisers, aldehydes, nitric acid, perchloric acid, potassium tert-butoxide, oleum reacts violently with strong oxidisers, alighatic amines, ammonia, caustics, isocyanates, pyridines, chlorosulfonic aid forms unstable peroxides in storage, or on contact with propanol or hydrogen peroxide attacks some plastics reacts violently with strong oxidisers, aldehydes, nitric acid, or when in contact with hydrogen peroxide treacts violently with strong oxidisers, aldehydes, alighatic amines, nitric acid, perchloric acid, potassium tert-butoxide, strong acids, reducing agents disolves some plastics, resins and rubber Toluene: reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl 2,4-imidazoldindione, dintrogen tetraxxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate forms explosive mixtures with strong axidisers, silver perchlorate, tetranitromethane is incompatible with bis-toluenediazo axide tataks some plastics, rubber and coatings may generate electrostatic charges, due to low conductivity, on flow or agitation. Xylenes: may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride tatacks some plastics, rubber and coatings may generate electrostatic charges on flow or agitation due to low conductivity. Nigorous reactions, sometimes amounding to explosions, can result from the contact between aromatic rings and strong oxidising agents. Aromatics can rea |

dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen

- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- Acetone: may react violently with chloroform, activated charcoal, aliohatic amines, bromine, bromine trifluoride, chlorotriazine, chromic(IV) acid. chromic(VI) acid, chromium trioxide, chromyl chloride, hexachloromelamine, iodine heptafluoride, iodoform, liquid oxygen, nitrosyl chloride, nitrosyl perchlorate, nitryl perchlorate, perchloromelamine, peroxomonosulfuric acid, platinum, potassium tert-butoxide, strong acids, sulfur dichloride, trichloromelamine, xenon tetrafluoride
- reacts violently with bromoform and chloroform in the presence of alkalies or in contact with alkaline surfaces.
- may form unstable and explosive peroxides in contact with strong oxidisers, fluorine, hydrogen peroxide (90%), sodium perchlorate, 2-methyl-1.3-butadiene
- can increase the explosive sensitivity of nitromethane on contact flow or agitation may generate electrostatic charges due to low conductivity dissolves or attacks most rubber, resins, and plastics (polyethylenes, polyester, vinyl ester, PVC, Neoprene, Viton)
- Butane/ isobutane
- reacts violently with strong oxidisers
- reacts with acetylene, halogens and nitrous oxides
- is incompatible with chlorine dioxide, conc. nitric acid and some plastics
- may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour.
- Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C)
- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
  - Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- Blycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides
- Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the flash-point - large containers may first need to be purged and inerted with nitrogen prior to loading
- In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions.
- Contact with aluminium should be avoided; release of hydrogen gas may result- glycol ethers will corrode scratched aluminium surfaces. May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred
- Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water . Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration

#### Ketones in this group:

- are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
- react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
- are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides
- react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HCIO4 (perchloric acid). may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.

A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH). Propylene glycol monomethyl ether acetate:

- may polymerise unless properly inhibited due to peroxide formation
- should be isolated from UV light, high temperatures, free radical initiators
- may react with strong oxidisers to produce fire and/ or explosion
- reacts violently with with sodium peroxide, uranium fluoride
- ▶ is incompatible with sulfuric acid, nitric acid, caustics, aliphatic amines, isocyanates, boranes

Propane:

▶ reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.

- liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

#### **SECTION 8 Exposure controls / personal protection**

#### Control parameters

#### Occupational Exposure Limits (OEL)

#### INGREDIENT DATA

| Source                                            | Ingredient             | Material name                         | TWA                     | STEL                     | Peak             | Notes                                                          |
|---------------------------------------------------|------------------------|---------------------------------------|-------------------------|--------------------------|------------------|----------------------------------------------------------------|
| New Zealand Workplace<br>Exposure Standards (WES) | acetone                | Acetone                               | 500 ppm / 1185<br>mg/m3 | 2375 mg/m3 /<br>1000 ppm | Not<br>Available | (bio)-Exposure can also be estimated by biological monitoring. |
| New Zealand Workplace<br>Exposure Standards (WES) | toluene                | Toluene (Toluol)                      | 50 ppm / 188<br>mg/m3   | Not Available            | Not<br>Available | (skin)-Skin absorption                                         |
| New Zealand Workplace<br>Exposure Standards (WES) | methyl ethyl<br>ketone | MEK (Methyl ethyl ketone, 2-Butanone) | 150 ppm / 445<br>mg/m3  | 890 mg/m3 /<br>300 ppm   | Not<br>Available | (bio)-Exposure can also be estimated by biological monitoring. |
| New Zealand Workplace<br>Exposure Standards (WES) | n-butyl acetate        | n-Butyl acetate                       | 150 ppm / 713<br>mg/m3  | 950 mg/m3 /<br>200 ppm   | Not<br>Available | Not Available                                                  |

| Source                                                                                                                                                                                                                             | Ingredient                | Material name                      | TWA                     | STEL                    | Peak             | Notes                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|-------------------------|-------------------------|------------------|--------------------------------------------------------|--|
| New Zealand Workplace<br>Exposure Standards (WES)                                                                                                                                                                                  | methyl isobutyl<br>ketone | Methyl isobutyl ketone<br>(Hexone) | 50 ppm / 205<br>mg/m3   | 307 mg/m3 / 75<br>ppm   | Not<br>Available | Not Available                                          |  |
| New Zealand Workplace<br>Exposure Standards (WES)                                                                                                                                                                                  | isopropanol               | Isopropyl alcohol                  | 400 ppm / 983<br>mg/m3  | 1230 mg/m3 /<br>500 ppm | Not<br>Available | Not Available                                          |  |
| New Zealand Workplace<br>Exposure Standards (WES)                                                                                                                                                                                  | xylene                    | Dimethylbenzene                    | 50 ppm / 217<br>mg/m3   | Not Available           | Not<br>Available | Not Available                                          |  |
| New Zealand Workplace<br>Exposure Standards (WES)                                                                                                                                                                                  | butane                    | Butane                             | 800 ppm / 1900<br>mg/m3 | Not Available           | Not<br>Available | Not Available                                          |  |
| New Zealand Workplace<br>Exposure Standards (WES)                                                                                                                                                                                  | propane                   | Propane                            | Not Available           | Not Available           | Not<br>Available | Simple asphyxiant - may present<br>an explosion hazard |  |
| Emergency Limits                                                                                                                                                                                                                   |                           |                                    |                         |                         |                  |                                                        |  |
| Ingredient                                                                                                                                                                                                                         | TEEL-1                    |                                    | TEEL-2                  |                         | TEEL-            | 3                                                      |  |
| acetone                                                                                                                                                                                                                            | Not Available             |                                    | Not Available           |                         | Not Av           | ailable                                                |  |
| ethyl-3-ethoxypropionate                                                                                                                                                                                                           | 1.6 ppm                   |                                    | 18 ppm                  |                         | 110 pp           | m                                                      |  |
| toluene                                                                                                                                                                                                                            | Not Available             |                                    | Not Available           |                         |                  | ailable                                                |  |
| methyl ethyl ketone                                                                                                                                                                                                                | Not Available             |                                    | Not Available           |                         |                  | ailable                                                |  |
| n-butyl acetate                                                                                                                                                                                                                    | Not Available             |                                    | Not Available           |                         |                  | ailable                                                |  |
| propylene glycol monomethyl ether acetate, alpha-isomer                                                                                                                                                                            | Not Available             |                                    | Not Available           |                         |                  | railable                                               |  |
| methyl isobutyl ketone                                                                                                                                                                                                             | 75 ppm                    |                                    | 500 ppm                 |                         | 3000*            | ppm                                                    |  |
| isopropanol                                                                                                                                                                                                                        | 400 ppm                   |                                    | 2000* ppm               |                         |                  | ** ppm                                                 |  |
| xylene                                                                                                                                                                                                                             |                           |                                    | Not Available           |                         |                  | Not Available                                          |  |
| butane                                                                                                                                                                                                                             | Not Available             |                                    | Not Available           |                         | Not Av           | Not Available                                          |  |
| propane                                                                                                                                                                                                                            | Not Available             |                                    | Not Available           | Not Available           |                  | ailable                                                |  |
| Ingredient                                                                                                                                                                                                                         | Original IDLH             |                                    |                         | Revised IDLH            | Revised IDLH     |                                                        |  |
| acetone                                                                                                                                                                                                                            | 2,500 ppm                 |                                    | Not Available           | Not Available           |                  |                                                        |  |
| ethyl-3-ethoxypropionate                                                                                                                                                                                                           | Not Available             |                                    | Not Available           |                         |                  |                                                        |  |
| toluene                                                                                                                                                                                                                            | 500 ppm                   |                                    | Not Available           |                         |                  |                                                        |  |
| methyl ethyl ketone                                                                                                                                                                                                                | 3,000 ppm                 |                                    | Not Available           |                         |                  |                                                        |  |
| n-butyl acetate                                                                                                                                                                                                                    | 1,700 ppm                 |                                    | Not Available           | Not Available           |                  |                                                        |  |
| propylene glycol monomethyl ether acetate, alpha-isomer                                                                                                                                                                            | Not Available             |                                    | Not Available           |                         |                  |                                                        |  |
| methyl isobutyl ketone                                                                                                                                                                                                             | 500 ppm                   |                                    |                         | Not Available           |                  |                                                        |  |
| dipropylene glycol dibenzoate                                                                                                                                                                                                      | Not Available             |                                    |                         | Not Available           |                  |                                                        |  |
| isopropanol                                                                                                                                                                                                                        | 2,000 ppm                 |                                    |                         | Not Available           |                  |                                                        |  |
| bis(1,2,2,6,6-pentamethyl-<br>4-piperidyl)sebacate                                                                                                                                                                                 | Not Available             |                                    |                         | Not Available           |                  |                                                        |  |
| Poly(oxy-1,2-ethanediyl),<br>.alpha-[3-[3-(2H-benzotriazol-<br>2-yl)-5- (1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omegahydroxy                                                                                      | Not Available             |                                    | Not Available           |                         |                  |                                                        |  |
| Poly(oxy-1,2-ethanediyl),.alpha<br>[3-[3-(2H-benzotriazol-2-yl)-<br>5-(1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-4-hydroxyphenyl]-<br>1-oxopropoxy]- | Not Available             |                                    |                         | Not Available           |                  |                                                        |  |
| xylene                                                                                                                                                                                                                             | 900 ppm                   |                                    |                         | Not Available           |                  |                                                        |  |
| butane                                                                                                                                                                                                                             | Not Available             |                                    |                         | 1,600 ppm               |                  |                                                        |  |
| propane                                                                                                                                                                                                                            | 2,100 ppm                 |                                    |                         | Not Available           |                  |                                                        |  |

Ingredient Occupational Exposure Band Rating Occupational Exposure Band Limit ethyl-3-ethoxypropionate Е ≤ 0.1 ppm dipropylene glycol dibenzoate D > 0.1 to ≤ 1 ppm bis(1,2,2,6,6-pentamethyl-D > 0.1 to ≤ 1 ppm 4-piperidyl)sebacate Poly(oxy-1,2-ethanediyl), .alpha.-[3-[3-(2H-benzotriazol-D > 0.1 to ≤ 1 ppm 2-yl)-5- (1,1-dimethylethyl)-

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Notes:

| Ingredient                                                                                                                                                                                                                         | Occupational Exposure Band Rating                                                                                                                                                                                                 | Occupational Exposure Band Limit                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 4-hydroxyphenyl]-<br>1-oxopropyl]omegahydroxy                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                     |
| Poly(oxy-1,2-ethanediyl),.alpha<br>[3-[3-(2H-benzotriazol-2-yl)-<br>5-(1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-4-hydroxyphenyl]-<br>1-oxopropoxy]- | D                                                                                                                                                                                                                                 | > 0.1 to ≤ 1 ppm                                                    |
| Notes:                                                                                                                                                                                                                             | Occupational exposure banding is a process of assigning chemicals into s<br>adverse health outcomes associated with exposure. The output of this pro<br>range of exposure concentrations that are expected to protect worker heal | cess is an occupational exposure band (OEB), which corresponds to a |

### MATERIAL DATA

#### IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

#### Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

#### Classification into classes follows:

ClassOSF Description

A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities

B 26-550 As "A" for 50-90% of persons being distracted

- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF)

OSF=38 (ACETONE)

#### For n-butyl acetate

Odour Threshold Value: 0.0063 ppm (detection), 0.038-12 ppm (recognition)

Exposure at or below the recommended TLV-TWA is thought to prevent significant irritation of the eyes and respiratory passages as well as narcotic effects. In light of the lack of substantive evidence regarding teratogenicity and a review of acute oral data a STEL is considered inappropriate. Odour Safety Factor(OSF)

OSF=3.8E2 (n-BUTYL ACETATE)

#### For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE)

for propylene glycol monomethyl ether acetate (PGMEA)

Saturated vapour concentration: 4868 ppm at 20 C. A two-week inhalation study found nasal effects to the nasal mucosa in animals at concentrations up to 3000 ppm. Differences in the teratogenic potential of the alpha (commercial grade) and beta isomers of PGMEA may be explained by the formation of different metabolites. The beta-isomer is thought to be oxidised to methoxypropionic acid, a homologue to methoxyacetic acid which is a known teratogen. The alpha- form is conjugated and excreted. PGMEA mixture (containing 2% to 5% beta isomer) is a mild skin and eye irritant,

methoxyacetic acid which is a known teratogen. The alpha- form is conjugated and excreted. PGMEA mixture (containing 2% to 5% beta isomer) is a mild skin and eye irritant, produces mild central nervous system effects in animals at 3000 ppm and produces mild CNS impairment and upper respiratory tract and eye irritation in humans at 1000 ppm. In rats exposed to 3000 ppm PGMEA produced slight foetotoxic effects (delayed sternabral ossification) - no effects on foetal development were seen in rabbits exposed at 3000 ppm.

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human

reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known. Odour Safety Factor(OSF)

OSF=17 (TOLUENE)

For methyl ethyl ketone:

Odour Threshold Value: Variously reported as 2 ppm and 4.8 ppm

Odour threshold: 2 ppm (detection); 5 ppm (recognition) 25 ppm (easy recognition); 300 ppm IRRITATING

Exposures at or below the recommended TLV-TWA are thought to prevent injurious systemic effects and to minimise objections to odour and irritation. Where synergism or potentiation may occur stringent control of the primary toxin (e.g. n-hexane or methyl butyl ketone) is desirable and additional consideration should be given to lowering MEK exposures.

Odour Safety Factor(OSF) OSF=28 (METHYL ETHYL KETONE)

for methyl isobutyl ketone (MIBK):

Unfatigued, odour recognition threshold (100% test panel) is 0.3 - 0.5 ppm.

Distinct odour at 15 ppm.

Odour is objectionable and vapours are irritating to eyes at 200 ppm.

NOTE: Detector tubes for methyl isobutyl ketone, measuring in excess of 50 ppm, are commercially available. Exposure at or below the recommended TLV-TWA should provide sufficient protection against the potential irritant effects, headache and nausea, neurasthemic symptoms and other

systemic toxicities (including liver and kidney damage) produced by MIBK.

The low odour threshold (1.64 mg/m3) and the irritant effects can provide warning of high concentrations. Exposure to levels of 10-410 mg/m3 (2.4-100 ppm) produced perceptible irritation of the eyes, nose, or throat, and 820 mg/m3 (200 ppm) produced discomfort. Symptoms, such as headache, nausea, or vertigo, also occurred at 10-410 mg/m3 (2.4-100 ppm). A 2-h exposure of up to 200 mg/m3 (50 ppm) did not produce any significant effects on a simple reaction-time task or a test of mental arithmetic. Odour Safety Factor(OSF)

OSF=29 (METHYL ISOBUTYL KETONE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes.

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation. Odour Safety Factor(OSF)

OSF=4 (XYLENE)

For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE)

#### Exposure controls

|                         | Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use.<br>Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment.<br>Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.<br>The basic types of engineering controls are:<br>Process controls which involve changing the way a job activity or process is done to reduce the risk.<br>Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically<br>"adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a<br>ventilation system must match the particular process and chemical or contaminant in use.<br>Employers may need to use multiple types of controls to prevent employee overexposure.<br>General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to<br>obtain adequate protection.<br>Provide adequate ventilation in warehouse or closed storage areas.<br>Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh<br>circulating air required to effectively remove the contaminant. |                                                                                                                                                                                                                                      |                                                                                  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Appropriate engineering | Type of Contaminant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      | Speed:                                                                           |  |  |
| controls                | aerosols, (released at low velocity into zone of active gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5-1 m/s                                                                                                                                                                                                                            |                                                                                  |  |  |
|                         | direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                  |  |  |
|                         | Within each range the appropriate value depends on:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                  |  |  |
|                         | Lower end of the range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Upper end of the range                                                                                                                                                                                                               |                                                                                  |  |  |
|                         | 1: Room air currents minimal or favourable to capture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1: Disturbing room air currents                                                                                                                                                                                                      |                                                                                  |  |  |
|                         | 2: Contaminants of low toxicity or of nuisance value only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2: Contaminants of high toxicity                                                                                                                                                                                                     |                                                                                  |  |  |
|                         | 3: Intermittent, low production.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3: High production, heavy use                                                                                                                                                                                                        |                                                                                  |  |  |
|                         | 4: Large hood or large air mass in motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4: Small hood-local control only                                                                                                                                                                                                     |                                                                                  |  |  |
|                         | Simple theory shows that air velocity falls rapidly with distance<br>with the square of distance from the extraction point (in simpl<br>accordingly, after reference to distance from the contaminatin<br>1-2 m/s (200-400 f/min.) for extraction of solvents generated<br>considerations, producing performance deficits within the ext<br>factors of 10 or more when extraction systems are installed of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | le cases). Therefore the air speed at the extraction p<br>ng source. The air velocity at the extraction fan, for e<br>in a tank 2 meters distant from the extraction point.<br>raction apparatus, make it essential that theoretical | point should be adjusted,<br>example, should be a minimum of<br>Other mechanical |  |  |

Continued...

| Personal protection     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eye and face protection | <ul> <li>Safety glasses with side shields.</li> <li>Chemical goggles.</li> <li>Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]</li> <li>Close fitting gas tight goggles</li> <li>DO NOT wear contact lenses.</li> <li>Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]</li> <li>No special equipment trequired due to the physical form of the product.</li> </ul> |
| Skin protection         | See Hand protection below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hands/feet protection   | <ul> <li>NOTE:</li> <li>The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.</li> <li>Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.</li> <li>For esters: <ul> <li>Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.</li> <li>No special equipment needed when handling small quantities.</li> <li>OTHERWISE:</li> <li>For potentially moderate exposures:</li> <li>Wear general protective gloves, eg. light weight rubber gloves.</li> <li>For potentially heavy exposures:</li> <li>Wear chemical protective gloves, eg. PVC. and safety footwear.</li> </ul> </li> <li>No special equipment required due to the physical form of the product.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Body protection         | See Other protection below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Other protection        | <ul> <li>The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.</li> <li>Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.</li> <li>BRETHERICK: Handbook of Reactive Chemical Hazards.</li> <li>No special equipment needed when handling small quantities.</li> <li>OTHERWISE:         <ul> <li>Overalls.</li> <li>Skin cleansing cream.</li> <li>Eyewash unit.</li> <li>Do not spray on hot surfaces.</li> <li>No special equipment required due to the physical form of the product.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection: COLORPAK PRO SERIES AEROSOL ACRYLIC GLOSS CLEAR

| Material          | CPI |
|-------------------|-----|
| PE/EVAL/PE        | A   |
| BUTYL             | С   |
| BUTYL/NEOPRENE    | С   |
| CPE               | С   |
| HYPALON           | С   |
| NAT+NEOPR+NITRILE | С   |
| NATURAL RUBBER    | С   |
| NATURAL+NEOPRENE  | С   |
| IEOPRENE          | С   |
| IEOPRENE/NATURAL  | С   |
| ITRILE            | С   |
| NITRILE+PVC       | C   |
| PE                | С   |
| PVA               | С   |
| PVC               | С   |
| PVDC/PE/PVDC      | С   |

**Respiratory protection** 

Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

| Required Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator   |
|---------------------------------------|-------------------------|-------------------------|-----------------------------|
| up to 5 x ES                          | AX-AUS / Class<br>1 P2  | -                       | AX-PAPR-AUS /<br>Class 1 P2 |
| up to 25 x ES                         | Air-line*               | AX-2 P2                 | AX-PAPR-2 P2                |
| up to 50 x ES                         | -                       | AX-3 P2                 | -                           |
| 50+ x ES                              | -                       | Air-line**              | -                           |

### ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respiratory protection not normally required due to the physical form of the product. Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

| SARANEX-23        | С |
|-------------------|---|
| SARANEX-23 2-PLY  | С |
| TEFLON            | С |
| VITON             | С |
| VITON/BUTYL       | С |
| VITON/CHLOROBUTYL | С |
| VITON/NEOPRENE    | С |

\* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

## **SECTION 9** Physical and chemical properties

## Information on basic physical and chemical properties

| Appearance                                      | Clear, aerosol    |                                            |                |
|-------------------------------------------------|-------------------|--------------------------------------------|----------------|
|                                                 |                   |                                            |                |
| Physical state                                  | article           | Relative density (Water = 1)               | 0.74           |
| Odour                                           | Not Available     | Partition coefficient n-octanol<br>/ water | Not Available  |
| Odour threshold                                 | Not Available     | Auto-ignition temperature (°C)             | 431            |
| pH (as supplied)                                | Not Applicable    | Decomposition<br>temperature (°C)          | Not Available  |
| Melting point / freezing point<br>(°C)          | Not Available     | Viscosity (cSt)                            | Not Available  |
| Initial boiling point and boiling<br>range (°C) | Not Available     | Molecular weight (g/mol)                   | Not Available  |
| Flash point (°C)                                | -81               | Taste                                      | Not Available  |
| Evaporation rate                                | Not Available     | Explosive properties                       | Not Available  |
| Flammability                                    | HIGHLY FLAMMABLE. | Oxidising properties                       | Not Available  |
| Upper Explosive Limit (%)                       | 10                | Surface Tension (dyn/cm or mN/m)           | Not Available  |
| Lower Explosive Limit (%)                       | 1.5               | Volatile Component (%vol)                  | Not Available  |
| Vapour pressure (kPa)                           | Not Available     | Gas group                                  | Not Available  |
| Solubility in water                             | Immiscible        | pH as a solution (Not<br>Available%)       | Not Applicable |
| Vapour density (Air = 1)                        | Not Available     | VOC g/L                                    | Not Available  |

## **SECTION 10 Stability and reactivity**

| Reactivity                          | See section 7                                                                                                                                                        |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                  | <ul> <li>Elevated temperatures.</li> <li>Presence of open flame.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of hazardous reactions  | See section 7                                                                                                                                                        |
| Conditions to avoid                 | See section 7                                                                                                                                                        |
| Incompatible materials              | See section 7                                                                                                                                                        |
| Hazardous decomposition<br>products | See section 5                                                                                                                                                        |

### **SECTION 11 Toxicological information**

#### Information on toxicological effects

| Inhaled Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Inhaled | Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of |  |  |  |  |

The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression , headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from massive exposures.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma: fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death, C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18.000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases

The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure.

Common, generalised symptoms associated with toxic gas inhalation include:

- central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures;
- respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest;
- cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest;
- gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed degeneration of the olfactory epithelium in mice exposed at 300 ppm for the same time. Rats, similarly failed to show changes in internal organs and did not show olfactory epithelium degeneration until 3000 ppm. The no-effect level in rats was 1000 ppm.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors,

convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Acute exposure of humans to high concentrations of methyl ethyl ketone produces irritation to the eyes, nose, and throat. Other effects reported from acute inhalation exposure in humans include central nervous system depression, headache, and nausea.

Easy odour recognition and irritant properties of methyl ethyl ketone means that high vapour levels are readily detected and should be avoided by application of control measures; however odour fatigue may occur with loss of warning of exposure.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue.

Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Exposure to ketone vapours may produce nose, throat and mucous membrane irritation. High concentrations of vapour may produce central nervous system depression characterised by headache, vertigo, loss of coordination, narcosis and cardiorespiratory failure. Some ketones produce neurological disorders (polyneuropathy) characterised by bilateral symmetrical paresthesia and muscle weakness primarily in the legs and arms.

Systemic effects of acetone inhalation exposure include central nervous system depression, light-headedness, incoherent speech, ataxia, stupor, hypotension, tachycardia, metabolic acidosis, hyperglycaemia and ketosis. Rarely, convulsions and tubular necrosis may be evident. Other symptoms of exposure may include restlessness, headache, vomiting, low blood-pressure and rapid and irregular pulse, eye and throat irritation, weakness of the legs and dizziness. Inhalation of high concentrations may produce dryness of the mouth and throat, nausea, uncoordinated movement, loss of coordinated speech, drowsiness and, in severe cases, coma. Inhalation of acetone vapours over long periods causes irritation of the respiratory tract, coughing and headache. Rats exposed to 52200 ppm vapour for 1 hour showed clear signs of narcosis; fatalities occurred at 126600 ppm.

#### At sufficiently high doses the material may be hepatotoxic (i.e. poisonous to the liver). Signs may include nausea, stomach pains, low fever, loss of appetite, dark urine, clay-coloured stools, jaundice (yellowing of the skin or eyes) Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Swallowing 10 millilitres of isopropanol may cause serious injury; 100 millilitres may be fatal if not properly treated. The adult single lethal dose is approximately 250 millilitres. Isopropanol is twice as poisonous as ethanol, and the effects caused are similar, except that isopropanol does not cause an initial feeling of well-being. Swallowing may cause nausea, vomiting and diarrhea; vomiting and stomach inflammation is more prominent with isopropanol than with ethanol. Animals given near-lethal doses also showed inco-ordination, lethargy, inactivity and loss of Indestion consciousness. There is evidence that a slight tolerance to isopropanol may be acquired. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis: serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cvanosis) Accidental ingestion of the material may be damaging to the health of the individual. The material may accentuate any pre-existing dermatitis condition Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight exfoliation. Dermatitis has been reported in humans following dermal exposure to methyl ethyl ketone. Tests involving acute exposure of rabbits has shown methyl ethyl ketone to have high acute toxicity from dermal exposure. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511ipa Skin Contact The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either: produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures. Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Eve The liquid may produce eye discomfort and is capable of causing temporary impairment of vision and/or transient eye inflammation, ulceration Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may Chronic become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to establish a causal relationship between human exposure to the material and impaired fertility Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Studies with some glycol ethers (principally the monoethylene glycols) and their esters indicate reproductive changes, testicular atrophy, infertility and kidney function changes. The metabolic acetic acid derivatives of glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decreases significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally been associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats Which produces haemolytic anaemia). This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure. Glycol ethers based on propylene oxides, propylene glycol ethers, dipropylene glycol ethers and tripropylene glycol ethers are mainly available, commercially, as alpha-isomers (because of thermodynamic considerations); these are incapable of forming alkoxyacetic or alkoxypropionic acids as metabolites and therefore do not produce erythrocyte fragility unless contaminated by ethylene glycol ethers or to a significant degree by the beta-isomer . beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects). Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight

Continued...

loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

#### Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals.

A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rats at 2710 ppm, but not at 545 or 110 ppm; and no adverse effects on dermal exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater.

Exposure of pregnant rats and rabbits to the parent glycol ether, propylene glycol monomethyl ether which contained comparable amounts of the primary isomer, 2-methoxy-1-propanol, did not produce teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rat foetuses but not in rabbit foetuses at this concentration and maternal toxicity was noted in both species at this concentration Principal route of occupational exposure to the gas is by inhalation.

Chronic toluene habituation occurs following intentional abuse (glue sniffing) or from occupational exposure. Ataxia, incoordination and tremors of the hands and feet (as a consequence of diffuse cerebral atrophy), headache, abnormal speech, transient memory loss, convulsions, coma, drowsiness, reduced colour perception, frank blindness, nystagmus (rapid, involuntary eye-movements), hearing loss leading to deafness and mild dementia have all been associated with chronic abuse. Peripheral neve damage, encephalopathy, giant axonopathy electrolyte disturbances in the cerebrospinal fluid and abnormal computer tomographic (CT scans) are common amongst toluene addicts. Although toluene abuse has been linked with kidney disease, this does not commonly appear in cases of occupational toluene exposures. Cardiac and haematological toxicity are however associated with chronic toluene exposures. Cardiac arrhythmia, multifocal and premature ventricular contractions and supraventricular tachycardia are present in 20% of patients who abused toluene-containing paints. Previous suggestions that chronic toluene inhalation produced human peripheral neuropathy have been discounted. However central nervous system (CNS) depression is well documented where blood toluene exceeds 2.2 mg%. Toluene abusers can achieve transient circulating concentrations of 6.5 %. Amongst workers exposed for a median time of 29 years, to toluene, no subacute effects on neurasthenic complaints and psychometric test results could be established.

The prenatal toxicity of very high toluene concentrations has been documented for several animal species and man. Malformations indicative of specific teratogenicity have not generally been found. Neonatal toxicity, described in the literature, takes the form of embryo death or delayed foetal growth and delayed skeletal system development. Permanent damage of children has been seen only when mothers have suffered from chronic intoxication as a result of "sniffing".

Animal testing shows that methyl ethyl ketone may have slight effects on the nervous system, liver, kidney and respiratory system; there may also be developmental effects and an increase in birth defects. However, there is limited information available on the long-term effects of methyl ethyl ketone in humans, and no information is available on whether it causes developmental or reproductive toxicity or cancer. It is generally considered to have low toxicity, but it is often used in combination with other solvents, and the toxic effects of the mixture may be greater than with either solvent alone. Combinations of n-hexane or methyl n-butyl ketone with methyl ethyl ketone may increase the rate of peripheral neuropathy, a progressive disorder of the nerves of the extremities. Combinations with chloroform also show increase in toxicity. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness.

Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage.

There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol.

Animal testing showed the chronic exposure did not produce reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol.

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms.

Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Workers exposed to 700 ppm acetone for 3 hours/day for 7-15 years showed inflammation of the respiratory tract, stomach and duodenum, attacks of giddiness and loss of strength. Exposure to acetone may enhance liver toxicity of chlorinated solvents. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Continued...

| COLORPAK PRO SERIES<br>AEROSOL ACRYLIC GLOSS             | TOXICITY                                                                                                                                                           | IRRITATION                                                                                                                  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| CLEAR                                                    | Not Available                                                                                                                                                      | Not Available                                                                                                               |
|                                                          | ΤΟΧΙΟΙΤΥ                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: 20000 mg/kg <sup>[2]</sup>                                                                                                                   | Eye (human): 500 ppm - irritant                                                                                             |
|                                                          | Inhalation(Mouse) LC50; 44 mg/L4h <sup>[2]</sup>                                                                                                                   | Eye (rabbit): 20mg/24hr -moderate                                                                                           |
|                                                          | Oral (Rat) LD50; 5800 mg/kg <sup>[2]</sup>                                                                                                                         | Eye (rabbit): 3.95 mg - SEVERE                                                                                              |
| acetone                                                  |                                                                                                                                                                    | Eye: adverse effect observed (irritating) <sup>[1]</sup>                                                                    |
|                                                          |                                                                                                                                                                    | Skin (rabbit): 500 mg/24hr - mild                                                                                           |
|                                                          |                                                                                                                                                                    | Skin (rabbit):395mg (open) - mild                                                                                           |
|                                                          |                                                                                                                                                                    | Skin: no adverse effect observed (not irritating) <sup>[1]</sup>                                                            |
|                                                          | тохісіту                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: 4076 mg/kg <sup>[2]</sup>                                                                                                                    | Eye (rabbit): 500mg/24h - mild                                                                                              |
| ethyl-3-ethoxypropionate                                 | Inhalation(Rat) LC50; 1250 ppm4h <sup>[2]</sup>                                                                                                                    | Skin (rabbit):10 mg/24h open mild                                                                                           |
|                                                          | Oral (Rat) LD50; ~3200-5000 mg/kg <sup>[2]</sup>                                                                                                                   |                                                                                                                             |
|                                                          | тохісіту                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: 12124 mg/kg <sup>[2]</sup>                                                                                                                   | Eye (rabbit): 2mg/24h - SEVERE                                                                                              |
|                                                          | Inhalation(Rat) LC50; >13350 ppm4h <sup>[2]</sup>                                                                                                                  | Eye (rabbit):0.87 mg - mild                                                                                                 |
|                                                          | Oral (Rat) LD50; 636 mg/kg <sup>[2]</sup>                                                                                                                          | Eye (rabbit):100 mg/30sec - mild                                                                                            |
| toluene                                                  |                                                                                                                                                                    | Eye: adverse effect observed (irritating) <sup>[1]</sup>                                                                    |
|                                                          |                                                                                                                                                                    | Skin (rabbit):20 mg/24h-moderate                                                                                            |
|                                                          |                                                                                                                                                                    | Skin (rabbit):500 mg - moderate                                                                                             |
|                                                          |                                                                                                                                                                    | Skin: adverse effect observed (irritating) <sup>[1]</sup>                                                                   |
|                                                          |                                                                                                                                                                    | Skin: no adverse effect observed (not irritating) <sup>[1]</sup>                                                            |
|                                                          | ТОХІСІТҮ                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: 6480 mg/kg <sup>[2]</sup>                                                                                                                    | Eye (human): 350 ppm -irritant                                                                                              |
| methyl ethyl ketone                                      | Inhalation(Mouse) LC50; 32 mg/L4h <sup>[2]</sup>                                                                                                                   | Eye (rabbit): 80 mg - irritant                                                                                              |
|                                                          | Oral (Rat) LD50; 2054 mg/kg <sup>[1]</sup>                                                                                                                         | Skin (rabbit): 402 mg/24 hr - mild                                                                                          |
|                                                          |                                                                                                                                                                    | Skin (rabbit):13.78mg/24 hr open                                                                                            |
|                                                          | ΤΟΧΙCΙΤΥ                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: 3200 mg/kg <sup>[2]</sup>                                                                                                                    | Eye ( human): 300 mg                                                                                                        |
|                                                          | Inhalation(Rat) LC50; 0.74 mg/l4h <sup>[2]</sup>                                                                                                                   | Eye (rabbit): 20 mg (open)-SEVERE                                                                                           |
| n-butyl acetate                                          | Oral (Rabbit) LD50; 3200 mg/kg <sup>[2]</sup>                                                                                                                      | Eye (rabbit): 20 mg/24h - moderate                                                                                          |
|                                                          |                                                                                                                                                                    | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>                                                             |
|                                                          |                                                                                                                                                                    | Skin (rabbit): 500 mg/24h-moderate                                                                                          |
|                                                          |                                                                                                                                                                    | Skin: no adverse effect observed (not irritating) $\ensuremath{^{[1]}}$                                                     |
|                                                          | ΤΟΧΙΟΙΤΥ                                                                                                                                                           | IRRITATION                                                                                                                  |
| opylene glycol monomethyl<br>ether acetate, alpha-isomer | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup>                                                                                                                      | Eye: no adverse effect observed (not irritating) <sup>[1]</sup>                                                             |
|                                                          | Oral (Rat) LD50; 3739 mg/kg <sup>[2]</sup>                                                                                                                         | Skin: no adverse effect observed (not irritating) <sup>[1]</sup>                                                            |
|                                                          | ΤΟΧΙΟΙΤΥ                                                                                                                                                           | IRRITATION                                                                                                                  |
|                                                          | Dermal (rabbit) LD50: >16000 mg/kg <sup>[1]</sup>                                                                                                                  | Eye (human): 200 ppm/15m                                                                                                    |
|                                                          | Inhalation(Rat) LC50; ~8.2-16.4 mg/l4h <sup>[2]</sup>                                                                                                              | Eye (rabbit): 40 mg - SEVERE                                                                                                |
| methyl isobutyl ketone                                   |                                                                                                                                                                    |                                                                                                                             |
| methyl isobutyl ketone                                   | Oral (Rat) LD50; 2080 mg/kg <sup>[2]</sup>                                                                                                                         | Eye (rabbit): 500 mg/24h - mild                                                                                             |
| methyl isobutyl ketone                                   |                                                                                                                                                                    | Eye (rabbit): 500 mg/24h - mild<br>Skin (rabbit): 500 mg/24h - mild                                                         |
| methyl isobutyl ketone                                   |                                                                                                                                                                    | Skin (rabbit): 500 mg/24h - mild IRRITATION                                                                                 |
|                                                          | Oral (Rat) LD50; 2080 mg/kg <sup>[2]</sup>                                                                                                                         | Skin (rabbit): 500 mg/24h - mild                                                                                            |
|                                                          | Oral (Rat) LD50; 2080 mg/kg <sup>[2]</sup>                                                                                                                         | Skin (rabbit): 500 mg/24h - mild IRRITATION                                                                                 |
| methyl isobutyl ketone<br>propylene glycol dibenzoate    | Oral (Rat) LD50; 2080 mg/kg <sup>[2]</sup><br><b>TOXICITY</b><br>dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup>                                                     | Skin (rabbit): 500 mg/24h - mild         IRRITATION         Eye: no adverse effect observed (not irritating) <sup>[1]</sup> |
|                                                          | Oral (Rat) LD50; 2080 mg/kg <sup>[2]</sup><br><b>TOXICITY</b><br>dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup><br>Inhalation(Rat) LC50; >200 mg/l4h <sup>[2]</sup> | Skin (rabbit): 500 mg/24h - mild         IRRITATION         Eye: no adverse effect observed (not irritating) <sup>[1]</sup> |

|                                                                                                                     | Inhalation(Mouse) LC50; 53 mg/L4h <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eye (rabbit): 100 mg - SEVERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     | Oral (Mouse) LD50; 3600 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eye (rabbit): 100mg/24hr-moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Skin (rabbit): 500 mg - mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| bis(1,2,2,6,6-pentamethyl-                                                                                          | τοχιςιτγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-piperidyl)sebacate                                                                                                | Oral (Rat) LD50; 3100 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Poly(oxy-1,2-ethanediyl),                                                                                           | τοχιςιτγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| alpha[3-[3-(2H-benzotriazol-<br>2-yl)-5- (1,1-dimethylethyl)-                                                       | dermal (rat) LD50: >2000 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4-hydroxyphenyl]-<br>-oxopropyl]omegahydroxy                                                                        | Oral (Rat) LD50; >5000 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Poly(oxy-<br>1,2-ethanediyl),.alpha[3-[3-<br>(2H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-<br>4-hydroxyphenyl]- | ТОХІСІТҮ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropoxy]- | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                     | ΤΟΧΙΟΙΤΥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                     | Dermal (rabbit) LD50: >1700 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eye (human): 200 ppm irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                     | Inhalation(Rat) LC50; 5000 ppm4h <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eye (rabbit): 5 mg/24h SEVERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| xylene                                                                                                              | Oral (Mouse) LD50; 2119 mg/kg <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eye (rabbit): 87 mg mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eye: adverse effect observed (irritating) <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Skin (rabbit):500 mg/24h moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Skin: adverse effect observed (irritating) <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                     | ΤΟΧΙΟΙΤΥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| butane                                                                                                              | Inhalation(Rat) LC50; 658 mg/l4h <sup>[2]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                     | ΤΟΧΙΟΙΤΥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRRITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| propane                                                                                                             | Inhalation(Rat) LC50; >13023 ppm4h <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Legend:                                                                                                             | 1. Value obtained from Europe ECHA Registered Substar<br>specified data extracted from RTECS - Register of Toxic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise<br>Effect of chemical Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COLORPAK PRO SERIES<br>AEROSOL ACRYLIC GLOSS<br>CLEAR                                                               | cessation of exposure, the level of aromatic hydrocarbons<br>bioaccumulate in the body. Selective partitioning of the are<br>regarding distribution following dermal absorption. Howev<br>with inhalation exposure.<br>Aromatics hydrocarbons may undergo several different PI<br>followed by Phase II conjugation to glycine, sulfation or gli<br>that of the alkylbenzenes and consists of: (1) oxidation of<br>carboxylic acid; (3) the carboxylic acid is then conjugated<br>of a complex mixture of isomeric triphenols, the sulfate an<br>dimethylhippuric acids. Consistent with the low propensity<br>significant inducers of their own metabolism.<br>The predominant route of excretion of aromatic hydrocarb<br>parent compound, or urinary excretion of its metabolites. | ic hydrocarbons undergo substantial partitioning into adipose tissues. Following<br>s in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to<br>omatic hydrocarbons into the non-adipose tissues is unlikely. No data is available<br>er, distribution following this route of exposure is likely to resemble the pattern occur<br>hase I dealkylation, hydroxylation and oxidation reactions which may or may not be<br>ucuronidation. However, the major predominant biotransformation pathway is typical<br>one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a<br>with glycine to form a hippuric acid. The minor metabolites can be expected to cons<br>id glucuronide conjugates of dimethylbenzyl alcohols, dimethylbenzoic acids and<br>or for bioaccumulation of aromatic hydrocarbons, these substances are likely to be<br>wons following inhalation exposure involves either exhalation of the unmetabolized<br>When oral administration occurs, there is little exhalation of unmetabolized these<br>ne liver. Under these circumstances, urinary excretion of metabolites is the dominant |
| ETHYL-<br>3-ETHOXYPROPIONATE                                                                                        | * Union Carbide ** Endura Manufacturing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for short periods of time experience adverse central nervous system effects ranging<br>d death. Similar effects are observed in short-term animal studies.<br>vere central nervous system depression, and in large doses, can act as a narcotic. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Toluene can also strip the skin of lipids causing dermatitis Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days **Subchronic/Chronic Effects:** 

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney.

#### Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm. Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin. Neural and cerebellar dystrophy were reported in several cases of habitual "glue sniffing." An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference: however. the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowestobserved-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day) . Developmental/Reproductive Toxicity Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals. Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring. Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor. Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene . Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues . Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure. Methyl ethyl ketone is considered to have a low order of toxicity: however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl METHYL ETHYL KETONE n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities. Combinations with chloroform also show increase in toxicity A BASF report (in ECETOC ) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in PROPYLENE GLYCOL rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial MONOMETHYL ETHER material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] \*Shin-Etsu ACETATE, ALPHA-ISOMER SDS For methyl isobutyl ketone (MIBK): MIBK is primarily absorbed by the lungs in animals and humans; it can however be absorbed by the gastrointestinal system and through skin. In two cases involving individuals exposed to the vapour MIBK was found in the brain, liver, lung, vitreous fluid, kidney and blood. Experiments in guinea pigs show that MIBK is metabolised to 4-hydroxy-4-methyl-2-pentanone and 4-methyl-2-pentanol. Ketones are generally excreted rapidly in expired air. Small amounts of MIBK are also excreted in the urine. Humans excreted less than 0.1% of the dose as unmetabolised MIBK in the urine within the first 3 hours post exposure. Serum half-life in guinea pigs is about 55 minutes with a clearance time of 6 hours In animal studies, the acute systemic toxicity of MIBK, via the oral and inhalation routes of exposure, is low. In a 90-day gavage study on rats, a no-observed-effect level (NOEL) of 50 mg/kg per day was found. In 90-day inhalation studies on rats and mice, concentrations of up to 4100 mg/m3 (1000 ppm) did not result in significant toxicity, though compound-related reversible morphological changes were reported in the liver and kidney. Evidence of central nervous system depression was seen in animals exposed to a level of 4100 mg/m3 (1000 ppm). In a number of studies, exposure to MIBK concentrations as low as 1025 mg/m3 (250 ppm) resulted in an increase in liver size and induced hepatic microsomal METHYL ISOBUTYL KETONE metabolism. This may be responsible for the exacerbation of haloalkane toxicity and for the potentiation of the neurotoxicity of n-hexane. MIBK was also found to potentiate the cholestatic effects of manganese given with, or without, bilirubin. In 90-day studies on mice, rats, dogs, and monkeys, only male rats developed hyaline droplets in the proximal tubules of the kidney. Effects on behaviour were reported in baboons exposed for 7 days to 205 mg/m3 (50 ppm). At a concentration of 4100 mg/m3 (1000 ppm), MIBK was not embryotoxic, foetotoxic, or teratogenic in rats or mice. Foetotoxicity was only observed at concentrations of MIBK that caused maternal toxicity. MIBK did not induce gene mutations in in vitro bacterial test systems with, or without, metabolic activation. Negative results were also obtained in vitro with, or without, metabolic activation, in tests for mitotic gene conversion in yeast, and for gene mutation in cultured mammalian cells. The results of in vitro assays for unscheduled DNA synthesis in primary rat hepatocytes and for structural chromosome damage in cultured rat liver cells were negative. An in vivo micronucleus test on mice was negative. These data indicate that MIBK is not genotoxic. No long-term or carcinogenicity studies are available. The toxicity of MIBK for aquatic organisms and microorganisms is low. WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. DIPROPYLENE GLYCOL The U.S. EPA High Production Volume Information System (HPVIS 2009) lists both diethylene glycol dibenzoate (DEGDB) and dipropylene DIBENZOATE glycol dibenzoate (DPGDB) as non-mutagenic and non-carcinogenic. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, ISOPROPANOL nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically

# Continued...

significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and

#### significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15pentaoxaheptacosan-1-ol ) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69 Poly(oxy-1,2-ethanediyl), Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in .alpha.-[3-[3-(2H-benzotriazolcombination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other 2-yl)-5- (1,1-dimethylethyl)derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and 4-hydroxyphenyl]skin conditioners. 1-oxopropyl]-.omega.-hydroxy PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1.4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105 XYLENE Reproductive effector in rats PROPANE No significant acute toxicological data identified in literature search. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main COLORPAK PRO SERIES criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent AEROSOL ACRYLIC GLOSS asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible CLEAR & METHYL ETHYL airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal **KETONE & METHYL** lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to ISOBUTYL KETONE & the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a ISOPROPANOL result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. COLORPAK PRO SERIES AEROSOL ACRYLIC GLOSS CLEAR & DIPROPYLENE GLYCOL DIBENZOATE & BIS(1.2.2.6.6-PENTAMETHYL-4-PIPERIDYL)SEBACATE & Poly(oxy-1,2-ethanediyl), .alpha.-[3-[3-(2H-benzotriazol-The following information refers to contact allergens as a group and may not be specific to this product. 2-yl)-5- (1,1-dimethylethyl)-Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, 4-hydroxyphenyl]-1-oxopropyl]-.omega.-hydroxy involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely & Poly(oxy-1,2-ethanediyl),.alpha.-[3-[3distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. (2H-benzotriazol-2-yl)-5-(1,1dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]-.omega.-[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]-Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acvclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw COLORPAK PRO SERIES

COLORPAK PRO SERIES AEROSOL ACYLIC GLOSS CLEAR & N-BUTYL ACETATE CLEAR & N-BUTYL ACETATE

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average

#### Page 20 of 31 COLORPAK PRO SERIES AEROSOL ACRYLIC GLOSS CLEAR maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods InternationI Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998 for propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids. Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects). This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product. Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body. As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5.000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating COLORPAK PRO SERIES to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers. **CLEAR & PROPYLENE** In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB - 13 wk) and 450 mg/kg-d (DPnB - 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d ISOMER (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity. The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. In vitro, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic in vivo. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice. A BASF report (in ECETOC ) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] for acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice COLORPAK PRO SERIES (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant AEROSOL ACRYLIC GLOSS reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at **CLEAR & ACETONE** 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater.

AEROSOL ACRYLIC GLOSS GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-

| ACETONE & ETHYL-<br>3-ETHOXYPROPIONATE &<br>METHYL ISOBUTYL KETONE<br>& ISOPROPANOL | The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.           |                                     |                                                                                             |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| TOLUENE & METHYL ETHYL<br>KETONE & N-BUTYL<br>ACETATE & XYLENE                      | The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of<br>dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the<br>spongy layer (spongiosis) and intracellular oedema of the epidermis. |                                     |                                                                                             |  |  |
| N-BUTYL ACETATE & XYLENE                                                            | The material may produce severe irritation to the eye produce conjunctivitis.                                                                                                                                                                                                                                                                                            | causing pronounced inflammation. Re | epeated or prolonged exposure to irritants may                                              |  |  |
| ISOPROPANOL & XYLENE                                                                | The substance is classified by IARC as Group 3:<br>NOT classifiable as to its carcinogenicity to humans.<br>Evidence of carcinogenicity may be inadequate or limited in animal testing.                                                                                                                                                                                  |                                     |                                                                                             |  |  |
| Acute Toxicity                                                                      | ×                                                                                                                                                                                                                                                                                                                                                                        | X Carcinogenicity X                 |                                                                                             |  |  |
| Skin Irritation/Corrosion                                                           | ×                                                                                                                                                                                                                                                                                                                                                                        | Reproductivity                      | ✓                                                                                           |  |  |
| Serious Eye Damage/Irritation                                                       | ×                                                                                                                                                                                                                                                                                                                                                                        | STOT - Single Exposure              | ×                                                                                           |  |  |
| Respiratory or Skin sensitisation                                                   | ✓                                                                                                                                                                                                                                                                                                                                                                        | STOT - Repeated Exposure            | *                                                                                           |  |  |
| Mutagenicity                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                        | Aspiration Hazard                   | ×                                                                                           |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                          |                                     | not available or does not fill the criteria for classification<br>le to make classification |  |  |

# **SECTION 12 Ecological information**

| xicitv |  |
|--------|--|
|        |  |

| COLORPAK PRO SERIES                                       | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Source           |
|-----------------------------------------------------------|------------------|--------------------|-------------------------------|-------------|------------------|------------------|
| AEROSOL ACRYLIC GLOSS<br>CLEAR                            | Not<br>Available | Not Available      | Not Available                 |             | Not<br>Available | Not<br>Available |
|                                                           | Endpoint         | Test Duration (hr) | Species                       | Value       | •                | Source           |
|                                                           | NOEC(ECx)        | 12h                | Fish                          | 0.001       | mg/L             | 4                |
| acetone                                                   | EC50             | 48h                | Crustacea                     | 6098.       | 4mg/L            | 5                |
|                                                           | EC50             | 96h                | Algae or other aquatic plants | 9.873       | -27.684mg/l      | 4                |
|                                                           | LC50             | 96h                | Fish                          | 3744.       | 6-5000.7mg/L     | 4                |
|                                                           | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Source           |
|                                                           | EC50(ECx)        | 48h                | Crustacea                     |             | 970mg/l          | 1                |
| ethyl-3-ethoxypropionate                                  | EC50             | 72h                | Algae or other aquatic plants |             | >114.86mg/l      | 2                |
|                                                           | EC50             | 48h                | Crustacea                     |             | 970mg/l          | 1                |
|                                                           | LC50             | 96h                | Fish                          |             | 45.3mg/l         | 2                |
|                                                           | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Source           |
|                                                           | NOEC(ECx)        | 168h               | Crustacea                     |             | 0.74mg/L         | 5                |
| toluene                                                   | EC50             | 48h                | Crustacea                     |             | 3.78mg/L         | 5                |
|                                                           | EC50             | 96h                | Algae or other aquatic plants |             | >376.71mg/L      | 4                |
|                                                           | LC50             | 96h                | Fish                          |             | 5-35mg/l         | 4                |
|                                                           | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Source           |
|                                                           | NOEC(ECx)        | 48h                | Crustacea                     |             | 68mg/l           | 2                |
| methyl ethyl ketone                                       | EC50             | 72h                | Algae or other aquatic plants |             | 1972mg/l         | 2                |
| methyr ethyr ketone                                       | EC50             | 48h                | Crustacea                     |             | 308mg/l          | 2                |
|                                                           | EC50             | 96h                | Algae or other aquatic plants |             | >500mg/l         | 4                |
|                                                           | LC50             | 96h                | Fish                          |             | >324mg/L         | 4                |
|                                                           | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Sourc            |
|                                                           | EC50             | 72h                | Algae or other aquatic plants |             | 246mg/l          | 2                |
| n-butyl acetate                                           | EC50(ECx)        | 96h                | Fish                          | Fish 18mg/l |                  | 2                |
|                                                           | EC50             | 48h                | Crustacea                     |             | 32mg/l           | 1                |
|                                                           | LC50             | 96h                | Fish                          |             | 18mg/l           | 2                |
|                                                           | Endpoint         | Test Duration (hr) | Species                       |             | Value            | Source           |
|                                                           | EC50             | 72h                | Algae or other aquatic plants |             | >1000mg/l        | 2                |
| ropylene glycol monomethyl<br>ether acetate, alpha-isomer | NOEC(ECx)        | 336h               | Fish                          |             | 47.5mg/l         | 2                |
| ether acetate, alpha-isomer                               | EC50             | 48h                | Crustacea                     |             | 373mg/l          | 2                |

|                                                                                                                                          | EC50                  | 96h                       | Algae or other aquatic plants                   | >1000mg/l        | 2               |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|-------------------------------------------------|------------------|-----------------|
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | 100mg/l          | 1               |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Source          |
|                                                                                                                                          | EC50(ECx)             | 48h                       | Crustacea                                       | 170mg/l          | 1               |
| methyl isobutyl ketone                                                                                                                   | EC50                  | 48h                       | Crustacea                                       | 170mg/l          | 1               |
|                                                                                                                                          | EC50                  | 96h                       | Algae or other aquatic plants                   | 400mg/l          | 1               |
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | >179mg/l         | 2               |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Source          |
| ipropylene glycol dibenzoate                                                                                                             | NOEC(ECx)             | 96h                       | Fish                                            | 1.2mg/l          | 2               |
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | >3mg/l           | 2               |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Sourc           |
|                                                                                                                                          | EC50                  | 72h                       | Algae or other aquatic plants                   | >1000mg/l        | 1               |
|                                                                                                                                          | EC50(ECx)             | 24h                       | Algae or other aquatic plants                   | 0.011mg/L        | 4               |
| isopropanol                                                                                                                              | EC50                  | 48h                       | Crustacea                                       | 7550mg/l         | 4               |
|                                                                                                                                          | EC50                  | 96h                       | Algae or other aquatic plants                   | >1000mg/l        | 1               |
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | 4200mg/l         | 4               |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Sourc           |
| bis(1,2,2,6,6-pentamethyl-                                                                                                               | EC0(ECx)              | 24h                       | Crustacea                                       | <10mg/l          | 1               |
| 4-piperidyl)sebacate                                                                                                                     | LC50                  | 96h                       | Fish                                            | 0.34mg/l         | 1               |
| Poly(oxy-1,2-ethanediyl),                                                                                                                | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Source          |
| alpha[3-[3-(2H-benzotriazol-<br>2-yl)-5- (1,1-dimethylethyl)-                                                                            | Not                   | Not Available             | Not Available                                   | Not              | Not             |
| 4-hydroxyphenyl]-<br>-oxopropyl]omegahydroxy                                                                                             | Available             | Not / Waldblo             |                                                 | Available        | Availabl        |
| Poly(oxy-<br>1,2-ethanediyl),.alpha[3-[3-<br>(2H-benzotriazol-2-yl)-5-(1,1-                                                              |                       |                           |                                                 |                  |                 |
| dimethylethyl)-                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Source          |
| 4-hydroxyphenyl]-<br>1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropoxy]- | Not<br>Available      | Not Available             | Not Available                                   | Not<br>Available | Not<br>Availabl |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Sourc           |
|                                                                                                                                          | EC50                  | 72h                       | Algae or other aquatic plants                   | 4.6mg/l          | 2               |
| xylene                                                                                                                                   | NOEC(ECx)             | 73h                       | Algae or other aquatic plants                   | 0.44mg/l         | 2               |
| Ay 10110                                                                                                                                 | EC50                  | 48h                       | Crustacea                                       | 1.8mg/l          | 2               |
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | 2.6mg/l          | 2               |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            | Sourc           |
|                                                                                                                                          | EC50(ECx)             | 96h                       | Algae or other aquatic plants                   | 7.71mg/l         | 2               |
| butane                                                                                                                                   | EC50                  | 96h                       | Algae or other aquatic plants                   | 7.71mg/l         | 2               |
|                                                                                                                                          | LC50                  | 96h                       | Fish                                            | 24.11mg/l        | 2               |
|                                                                                                                                          |                       |                           |                                                 |                  | Sourc           |
|                                                                                                                                          | Endpoint              | Test Duration (hr)        | Species                                         | Value            |                 |
|                                                                                                                                          | Endpoint<br>EC50(ECx) | Test Duration (hr)<br>96h | Species           Algae or other aquatic plants | 7.71mg/l         | 2               |
| propane                                                                                                                                  |                       |                           |                                                 |                  |                 |
| propane                                                                                                                                  | EC50(ECx)             | 96h                       | Algae or other aquatic plants                   | 7.71mg/l         | 2               |

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

+ drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility

Iethal effects on fish by coating gill surfaces, preventing respiration

asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and

adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water

#### infestation.

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble.

Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB.

Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are "readily biodegradable" under aerobic conditions. In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes >naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For petroleum distillates:

#### Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes:

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L-was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga lsochrysis galbana was more tolerant to diesel fuel, with a 24-hour loCEC of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For Methyl Ethyl Ketone: log Kow: 0.26-0.69; log Koc: 0.69;

Koc: 34; Half-life (hr) air: 2.3; Half-life (hr) H2O surface water: 72-288; Henry's atm m3 /mol: 1.05E-05; BOD 5: 1.5-2.24, 46%; COD: 2.2-2.31, 100%; ThOD: 2.44; BCF: 1.

Environmental Fate: Terrestrial Fate - Measured Koc values of 29 and 34 were obtained for methyl ethyl ketone in silt loams. Methyl ethyl ketone is expected to have very high mobility in soil. Volatilization of methyl ethyl ketone from moist and dry soil surfaces is expected. The volatilization half-life of methyl ethyl ketone from silt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions.

Aquatic Fate: Methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water and is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Bioconcentration is expected to be low in aquatic systems.

Atmospheric Fate: Methyl ethyl ketone will exist solely as a vapour in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight.

Ecotoxicity: Methyl ethyl ketone is not acutely toxic to fish, specifically, bluegill sunfish, guppy, goldfish, fathead minnow, mosquito fish, Daphnia magna water fleas and brine shrimp. For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

Environmental Fate: Several glycol ethers have been shown to biodegrade however; biodegradation slows as molecular weight increases. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Atmospheric Fate: Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photo-degradation (atmospheric half lives = 2.4-2.5 hr). Aquatic

Ectoxicity: Tri- and tetra ethylene glycol ethers are "practically non-toxic" to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the

butyl ethers. Glycols exert a high oxygen demand for decomposition and once released to the environment death of aquatic organisms occurs if dissolved oxygen is depleted. For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9

#### **Environmental Fate**

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilistion from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported.

Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nightime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane.

For Propane: Koc 460. log

Kow 2.36.

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. For Toluene:

log Kow : 2.1-3; log Kow : 2.1-3; koc : 37-260; log Kom : 1.39-2.89; Half-life (hr) air : 2.4-104; Half-life (hr) H2O surface water : 5.55-528;

Half-life (hr) H2O ground : 168-2628; Half-life (hr) soil : <48-240; Henry's Pa m3 /mol : 518-694; Henry's atm m3 /mol : 5.94; E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%; ThOD - 3.13 ; BCF - 1.67-380; log BCF - 0.22-3.28.

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal. Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bulegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

DO NOT discharge into sewer or waterways.

for acetone: log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2 BCF: 0.69

#### Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades.

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available.

Soil Guidelines: none available.

Air Quality Standards: none available.

#### Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity

Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l

Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l

Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l

Aquatic plant NOEC: 5400-7500 mg/l

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality.

The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

For n-Butyl Acetate: Koc: ~200; log Kow: 1.78; Half-life (hr) air: 144; Half-life (hr) H2O surface water: 178 - 27156; Henry's atm: m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7%; COD: 78%; ThOD: 2.207; BCF : 4-14.

Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may biodegrade in soil. Aquatic Fate: n-Butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 7 and 127 hours respectively. Hydrolysis may be an important environmental fate for this compound. Atmospheric Fate: n-Butyl acetate is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days.

Ecotoxicity: It is expected that bioconcentration in aquatic organisms is low. n-Butyl acetate is not acutely toxic to fish specifically, island silverside, bluegill sunfish, fathead minnow, and water fleas and has low toxicity to algae.

#### Persistence and degradability

| Ingredient               | Persistence: Water/Soil   | Persistence: Air                 |
|--------------------------|---------------------------|----------------------------------|
| acetone                  | LOW (Half-life = 14 days) | MEDIUM (Half-life = 116.25 days) |
| ethyl-3-ethoxypropionate | LOW                       | LOW                              |
| toluene                  | LOW (Half-life = 28 days) | LOW (Half-life = 4.33 days)      |

| Ingredient                                              | Persistence: Water/Soil      | Persistence: Air             |
|---------------------------------------------------------|------------------------------|------------------------------|
| methyl ethyl ketone                                     | LOW (Half-life = 14 days)    | LOW (Half-life = 26.75 days) |
| n-butyl acetate                                         | LOW                          | LOW                          |
| propylene glycol monomethyl ether acetate, alpha-isomer | LOW                          | LOW                          |
| methyl isobutyl ketone                                  | HIGH (Half-life = 7001 days) | LOW (Half-life = 1.9 days)   |
| dipropylene glycol dibenzoate                           | HIGH                         | HIGH                         |
| isopropanol                                             | LOW (Half-life = 14 days)    | LOW (Half-life = 3 days)     |
| xylene                                                  | HIGH (Half-life = 360 days)  | LOW (Half-life = 1.83 days)  |
| butane                                                  | LOW                          | LOW                          |
| propane                                                 | LOW                          | LOW                          |

#### **Bioaccumulative potential**

| Ingredient                                              | Bioaccumulation          |
|---------------------------------------------------------|--------------------------|
| acetone                                                 | LOW (BCF = 0.69)         |
| ethyl-3-ethoxypropionate                                | LOW (LogKOW = 1.0809)    |
| toluene                                                 | LOW (BCF = 90)           |
| methyl ethyl ketone                                     | LOW (LogKOW = 0.29)      |
| n-butyl acetate                                         | LOW (BCF = 14)           |
| propylene glycol monomethyl ether acetate, alpha-isomer | LOW (LogKOW = 0.56)      |
| methyl isobutyl ketone                                  | LOW (LogKOW = 1.31)      |
| dipropylene glycol dibenzoate                           | MEDIUM (LogKOW = 4.0228) |
| isopropanol                                             | LOW (LogKOW = 0.05)      |
| xylene                                                  | MEDIUM (BCF = 740)       |
| butane                                                  | LOW (LogKOW = 2.89)      |
| propane                                                 | LOW (LogKOW = 2.36)      |

## Mobility in soil

| Ingredient                                              | Mobility             |
|---------------------------------------------------------|----------------------|
| acetone                                                 | HIGH (KOC = 1.981)   |
| ethyl-3-ethoxypropionate                                | LOW (KOC = 10)       |
| toluene                                                 | LOW (KOC = 268)      |
| methyl ethyl ketone                                     | MEDIUM (KOC = 3.827) |
| n-butyl acetate                                         | LOW (KOC = 20.86)    |
| propylene glycol monomethyl ether acetate, alpha-isomer | HIGH (KOC = 1.838)   |
| methyl isobutyl ketone                                  | LOW (KOC = 10.91)    |
| dipropylene glycol dibenzoate                           | LOW (KOC = 1845)     |
| isopropanol                                             | HIGH (KOC = 1.06)    |
| butane                                                  | LOW (KOC = 43.79)    |
| propane                                                 | LOW (KOC = 23.74)    |

# **SECTION 13 Disposal considerations**

| Waste treatment methods      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product / Packaging disposal | <ul> <li>Recycle wherever possible or consult manufacturer for recycling options.</li> <li>Consult State Land Waste Management Authority for disposal.</li> <li>DO NOT allow wash water from cleaning or process equipment to enter drains.</li> <li>It may be necessary to collect all wash water for treatment before disposal.</li> <li>In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.</li> <li>Where in doubt contact the responsible authority.</li> <li>Consult State Land Waste Management Authority for disposal.</li> <li>Discharge contents of damaged aerosol cans at an approved site.</li> <li>Allow small quantities to evaporate.</li> <li>DO NOT incinerate or puncture aerosol cans.</li> <li>Bury residues and emptied aerosol cans at an approved site.</li> </ul> |

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

### **Disposal Requirements**

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

(1) a blast overpressure of more than 9 kPa; or

(2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

# **SECTION 14 Transport information**

#### Labels Required



 Marine Pollutant
 NO

 HAZCHEM
 Not Applicable

### Land transport (UN)

| UN number                    | 1950                                                                                             |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| UN proper shipping name      | AEROSOLS                                                                                         |  |  |
| Transport hazard class(es)   | Class     2.1       Subrisk     Not Applicable                                                   |  |  |
| Packing group                | Not Applicable                                                                                   |  |  |
| Environmental hazard         | Not Applicable                                                                                   |  |  |
| Special precautions for user | Special provisions         63; 190; 277; 327; 344; 381           Limited quantity         1000ml |  |  |

## Air transport (ICAO-IATA / DGR)

| UN number                    | 1950                                                                                                            |                                                          |                                                 |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--|
| UN proper shipping name      | Aerosols, flammable                                                                                             |                                                          |                                                 |  |
| Transport hazard class(es)   | ICAO/IATA Class<br>ICAO / IATA Subrisk<br>ERG Code                                                              | 2.1<br>Not Applicable<br>10L                             |                                                 |  |
| Packing group                | Not Applicable                                                                                                  |                                                          |                                                 |  |
| Environmental hazard         | Not Applicable                                                                                                  |                                                          |                                                 |  |
| Special precautions for user | Special provisions<br>Cargo Only Packing Ir<br>Cargo Only Maximum<br>Passenger and Cargo<br>Passenger and Cargo | Qty / Pack<br>Packing Instructions<br>Maximum Qty / Pack | A145 A167 A802<br>203<br>150 kg<br>203<br>75 kg |  |
|                              | Passenger and Cargo Limited Quantity Packing Instructions                                                       |                                                          | Y203                                            |  |
|                              | Passenger and Cargo Limited Maximum Qty / Pack                                                                  |                                                          | 30 kg G                                         |  |

### Sea transport (IMDG-Code / GGVSee)

| UN number                    | 1950                                                   | 1950                  |  |  |
|------------------------------|--------------------------------------------------------|-----------------------|--|--|
| UN proper shipping name      | AEROSOLS                                               |                       |  |  |
| Transport hazard class(es)   |                                                        | 2.1<br>Not Applicable |  |  |
| Packing group                | Not Applicable                                         |                       |  |  |
| Environmental hazard         | Not Applicable                                         |                       |  |  |
| Special precautions for user | EMS Number<br>Special provisions<br>Limited Quantities |                       |  |  |

Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

## Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| Product name | Group         |
|--------------|---------------|
| acetone      | Not Available |

| Product name                                                                                                                                                                                                                        | Group         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ethyl-3-ethoxypropionate                                                                                                                                                                                                            | Not Available |
| toluene                                                                                                                                                                                                                             | Not Available |
| methyl ethyl ketone                                                                                                                                                                                                                 | Not Available |
| n-butyl acetate                                                                                                                                                                                                                     | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer                                                                                                                                                                             | Not Available |
| methyl isobutyl ketone                                                                                                                                                                                                              | Not Available |
| dipropylene glycol dibenzoate                                                                                                                                                                                                       | Not Available |
| isopropanol                                                                                                                                                                                                                         | Not Available |
| bis(1,2,2,6,6-pentamethyl-<br>4-piperidyl)sebacate                                                                                                                                                                                  | Not Available |
| Poly(oxy-1,2-ethanediyl),<br>.alpha[3-[3-(2H-benzotriazol-<br>2-yl)-5- (1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omegahydroxy                                                                                        | Not Available |
| Poly(oxy-1,2-ethanediyl),.alpha<br>[3-[3-(2H-benzotriazol-2-yl)-<br>5-(1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]-omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-4-hydroxyphenyl]-<br>1-oxopropoxy]- | Not Available |
| xylene                                                                                                                                                                                                                              | Not Available |
| butane                                                                                                                                                                                                                              | Not Available |
| propane                                                                                                                                                                                                                             | Not Available |

## Transport in bulk in accordance with the ICG Code

| Product name                                                                                                                                                                                                                       | Ship Type     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| acetone                                                                                                                                                                                                                            | Not Available |
| ethyl-3-ethoxypropionate                                                                                                                                                                                                           | Not Available |
| toluene                                                                                                                                                                                                                            | Not Available |
| methyl ethyl ketone                                                                                                                                                                                                                | Not Available |
| n-butyl acetate                                                                                                                                                                                                                    | Not Available |
| propylene glycol monomethyl ether acetate, alpha-isomer                                                                                                                                                                            | Not Available |
| methyl isobutyl ketone                                                                                                                                                                                                             | Not Available |
| dipropylene glycol dibenzoate                                                                                                                                                                                                      | Not Available |
| isopropanol                                                                                                                                                                                                                        | Not Available |
| bis(1,2,2,6,6-pentamethyl-<br>4-piperidyl)sebacate                                                                                                                                                                                 | Not Available |
| Poly(oxy-1,2-ethanediyl),<br>.alpha[3-[3-(2H-benzotriazol-<br>2-yl)-5- (1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omegahydroxy                                                                                       | Not Available |
| Poly(oxy-1,2-ethanediyl),.alpha<br>[3-[3-(2H-benzotriazol-2-yl)-<br>5-(1,1-dimethylethyl)-<br>4-hydroxyphenyl]-<br>1-oxopropyl]omega[3-[3-(2<br>H-benzotriazol-2-yl)-5-(1,1-<br>dimethylethyl)-4-hydroxyphenyl]-<br>1-oxopropoxy]- | Not Available |
| xylene                                                                                                                                                                                                                             | Not Available |
| butane                                                                                                                                                                                                                             | Not Available |
| propane                                                                                                                                                                                                                            | Not Available |

# **SECTION 15 Regulatory information**

## Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

| HSR Number | Group Standard                         |
|------------|----------------------------------------|
| HSR002515  | Aerosols Flammable Group Standard 2020 |

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

Continued...

# COLORPAK PRO SERIES AEROSOL ACRYLIC GLOSS CLEAR

| New Zealand Inventory of Chemicals (NZIoC)<br>New Zealand Workplace Exposure Standards (WES)                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification                                                                                     |
| of Chemicals - Classification Data<br>New Zealand Inventory of Chemicals (NZIoC)                                                                                   |
|                                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals - Classification Data<br>New Zealand Inventory of Chemicals (NZIoC) |
| New Zealand Workplace Exposure Standards (WES)                                                                                                                     |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| New Zealand Inventory of Chemicals (NZIoC)                                                                                                                         |
| New Zealand Workplace Exposure Standards (WES)                                                                                                                     |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| New Zealand Inventory of Chemicals (NZIoC)                                                                                                                         |
| New Zealand Workplace Exposure Standards (WES)                                                                                                                     |
|                                                                                                                                                                    |
| egulatory lists                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification                                                                                     |
| of Chemicals - Classification Data<br>New Zealand Inventory of Chemicals (NZIoC)                                                                                   |
|                                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals                                                                     |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals - Classification Data                                               |
| New Zealand Inventory of Chemicals (NZIoC)<br>New Zealand Workplace Exposure Standards (WES)                                                                       |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification                                                                                     |
| of Chemicals - Classification Data<br>New Zealand Inventory of Chemicals (NZIoC)                                                                                   |
| New Zealand Workplace Exposure Standards (WES)                                                                                                                     |
| sts                                                                                                                                                                |
|                                                                                                                                                                    |
| ydroxyphenyl]-1-oxopropyl]omegahydroxy is found on the following regulatory li                                                                                     |
| rdroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl                                                                                  |
|                                                                                                                                                                    |
| New Zealand Hazardoup Substances and New Organisms (USNO) Act. Organisms                                                                                           |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals - Classification Data                                               |
| New Zealand Inventory of Chemicals (NZIoC)<br>New Zealand Workplace Exposure Standards (WES)                                                                       |
|                                                                                                                                                                    |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification                                                                                     |
| of Chemicals - Classification Data                                                                                                                                 |
| New Zealand Inventory of Chemicals (NZIoC)<br>New Zealand Workplace Exposure Standards (WES)                                                                       |
|                                                                                                                                                                    |

| New Zealand Approved Hazardous Substances with controls                                                              |
|----------------------------------------------------------------------------------------------------------------------|
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals                       |
| New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification<br>of Chemicals - Classification Data |

New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

**Hazardous Substance Location** 

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

| Hazard Class | Quantity (Closed Containers)       | Quantity (Open Containers)         |
|--------------|------------------------------------|------------------------------------|
| 2.1.2A       | 3 000 L (aggregate water capacity) | 3 000 L (aggregate water capacity) |

## **Certified Handler**

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

| Class of substance | Quantities     |
|--------------------|----------------|
| Not Applicable     | Not Applicable |

Refer Group Standards for further information

### Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

| Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification |
|--------------|--------------------------------------|------------|------------|------------------------------------------------------|
| 6.5A or 6.5B | 120                                  | 1          | 3          |                                                      |
| 2.1.2A       |                                      |            |            | 1L (aggregate water capacity)                        |

### **Tracking Requirements**

Not Applicable

### **National Inventory Status**

| National Inventory                                 | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Australia - AIIC / Australia<br>Non-Industrial Use | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Canada - DSL                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Canada - NDSL                                      | No (acetone; ethyl-3-ethoxypropionate; toluene; methyl ethyl ketone; n-butyl acetate; propylene glycol monomethyl ether acetate, alpha-isomer; methyl isobutyl ketone; dipropylene glycol dibenzoate; isopropanol; bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate; Poly(oxy-1,2-ethanediyl), .alpha[3-[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omegahydroxy; Poly(oxy-1,2-ethanediyl),.alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(3 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(3 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-0xopropyl]omega[3-[3 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-0xopropyl]omega[3-[3 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-0xopropyl]omega[3-[3 H-benzotriazol-2-yl]-5-(1,1-dimethylethyl]-4-hydroxyphenyl]-1-0xopropyl]-1-0xopropyl]o                              |  |  |
| China - IECSC                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Europe - EINEC / ELINCS / NLP                      | No (Poly(oxy-1,2-ethanediyl), .alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omegahydroxy;<br>Poly(oxy-1,2-ethanediyl),.alpha[3-[3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]omega[3-[3-(2 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]omega[3-[3-(2 H-benzotriazol-2-yl]-3-(3 H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]omega[3-[3-(3 H-benzotriazol-2-yl]-3-(3 H-benzotriazol-2 |  |  |
| Japan - ENCS                                       | No (Poly(oxy-1,2-ethanediyl), .alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omegahydroxy;<br>Poly(oxy-1,2-ethanediyl),.alpha[3-[3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol<br>2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Korea - KECI                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| New Zealand - NZIoC                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Philippines - PICCS                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| USA - TSCA                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Taiwan - TCSI                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Mexico - INSQ                                      | No (Poly(oxy-1,2-ethanediyl), .alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omegahydroxy;<br>Poly(oxy-1,2-ethanediyl),.alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol<br>2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Vietnam - NCI                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Russia - FBEPH                                     | No (Poly(oxy-1,2-ethanediyl), .alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omegahydroxy;<br>Poly(oxy-1,2-ethanediyl), .alpha[3-[3-(2H-benzotriazol-2-yl)-5- (1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropyl]omega[3-[3-(2 H-benzotriazol<br>2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Legend:                                            | Yes = All CAS declared ingredients are on the inventory<br>No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

# **SECTION 16 Other information**

| Revision Date | 18/07/2022 |
|---------------|------------|
| Initial Date  | 17/07/2022 |
|               |            |

## SDS Version Summary

| Version | Date of Update | Sections Updated                                                           |
|---------|----------------|----------------------------------------------------------------------------|
| 0.2     | 17/07/2022     | Classification, Environmental, Ingredients, Spills (major), Spills (minor) |

### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

### Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF: BioConcentration Factors** BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.

end of SDS