Damar Industries Limited

Version No: 1.2

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 4

Issue Date: **15/07/2022** Print Date: **15/07/2022** L.GHS.NZL.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS)	
Synonyms	CPA1692A- Black ,CPA5292A-Grey,CPA0192A-White,CPS401,CPS405,CPS421	
Proper shipping name	AEROSOLS	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack

Details of the supplier of the safety data sheet

Registered company name	Damar Industries Limited		
Address	00 Te Ngae Road, Eastgate Park, Rotorua 3042 New Zealand		
Telephone	+64 7 345 6007		
Fax	+64 7 345 6019		
Website	www.damarindustries.com		
Email	info@damarindustries.co.nz		

Emergency telephone number

Association / Organisation	CHEMCALL
Emergency telephone numbers	0800 243 622
Other emergency telephone numbers	1800 127 406 (outside New Zealand)

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

ChemWatch Hazard Ratings

	Min	Max	
Flammability	4		
Toxicity	1 📃		0 = Minimum
Body Contact	3		1 = Low
Reactivity	0		2 = Moderate
Chronic	4		3 = High 4 = Extreme

Classification ^[1]	Specific Target Organ Toxicity - Repeated Exposure Category 2, Serious Eye Damage/Eye Irritation Category 1, Skin Corrosion/Irritation Category 2, Reproductive Toxicity Category 2, Sensitisation (Skin) Category 1, Carcinogenicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Aerosols Category 1	
Legend:	1. Classified by Chernwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
Determined by Chemwatch using GHS/HSNO criteria	2.1.2A, 6.3A, 8.3A, 6.5B (contact), 6.7B, 6.8B, 6.9B, 9.1C	

Label elements

Hazard pictogram(s)	
Signal word	Danger

Hazard statement(s)

• •	
H373	May cause damage to organs through prolonged or repeated exposure.
H318	Causes serious eye damage.
H315	Causes skin irritation.
H361	Suspected of damaging fertility or the unborn child.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.
H412	Harmful to aquatic life with long lasting effects.
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.		
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.		
P211	Do not spray on an open flame or other ignition source.		
P251	Do not pierce or burn, even after use.		
P260	Do not breathe dust/fume.		
P280	Wear protective gloves, protective clothing, eye protection and face protection.		
P273	Avoid release to the environment.		
P264	Wash all exposed external body areas thoroughly after handling.		
P272	Contaminated work clothing should not be allowed out of the workplace.		

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P308+P313	IF exposed or concerned: Get medical advice/ attention.		
P310	Immediately call a POISON CENTER/doctor/physician/first aider.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		

Precautionary statement(s) Storage

	-
P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
67-64-1	18-25	acetone
64-17-5	8-15	ethanol
108-88-3	3-10	toluene
67-63-0	3-10	isopropanol
71-36-3	3-10	n-butanol
1330-20-7	1-5	xylene
141-78-6	1-5	ethyl acetate
7779-90-0	<2	zinc phosphate
25068-38-6	<1	bisphenol A diglycidyl ether polymer
100-41-4	<1	ethylbenzene
112-07-2	<1	ethylene glycol monobutyl ether acetate
106-97-8.	18-25	butane
74-98-6	8-15	propane
Legend:	 Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available 	

Description of first aid measures

Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable.
Ingestion	 Not considered a normal route of entry. Generally not applicable. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.

Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.

- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.

After the initial episode individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such

patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur.Careful consideration
 of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.
 BP America Product Safety & Toxicology Department

Treat symptomatically.

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- + Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.
- -----

ADVANCED TREATMENT

- + Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- + Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.

- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, PL. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above

Symptomatic and supportive therapy is advised in managing patients. for simple ketones:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ٠ Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ۲ Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.
- ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ۲ Consider intubation at first sign of upper airway obstruction resulting from oedema.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.

Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Drv chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only. SMALL FIRE:
- Water spray, dry chemical or CO2 LARGE FIRE:
- Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO)
	Continued

carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place
wARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures See section 8

Environmental precautions See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Ware frite Brigade and tell them location and nature of hazard. Ware frite Brigade and tell them location and nature of hazard. Ware frite Brigade and tell them location and nature of hazard. Prevent, by all means available, spillage from entering drains or water courses. Consider evaluation (or protective clear in place). No smoking, naked lights or signition sources. Dirotase eventilation. Stop leak if safe to do so. Water signal or do so. Usate stop of the stop of the location for the stop of t

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exits at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exits that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation. A external residue containing alpha-radiation. Airborne contaminated process equipment to and/or contaminated materials in a wet state. [TEXACO] Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. Do NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid smoking, naked lights or ignition sources. Avoid physical damage to containers. Avoid physical damage to containers. Avoid physical dama
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Store away from incompatible materials.

Conditions for safe storage, including any incompatibilities

Suitable container	 Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	 Isopropanol (syn: isopropyl alcohol, IPA): forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barum perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane atacks some plastics, rubber and coatings reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolldindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate forms explosi

Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.
Xylenes: May ignite or explode in contact with strong oxidisers, 1.3-dichloro-5.5-dimethylhydantoin, uranium fluoride.
 Attack some plastics, rubber and coatings
may generate electrostatic charges on flow or agitation due to low conductivity.
Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
For alkyl aromatics:
The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by
oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.
• Policy reaction with oxygen and under the initiatice of sumgin, a hydroperoxide at the appra-position to the aromatic mig, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a targing C-H bond is even more susceptible to attack by owner.
 Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
 Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
 Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
Microwave conditions give improved yields of the oxidation products.
Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs. Oxidation of Alkylaromatics: TSS Rao and Shubhra Awasthi: F-lournal of Chemistry Vol 4, No. 1, pp.1-13, January 2007.
Acetone:
may react violently with chloroform, activated charcoal, aliphatic amines, bromine, bromine trifluoride, chlorotriazine, chromic(IV) acid, chromic(IV) acid, chromic(VI) acid, chromiut trioxide, chromyl chloride, hexachloromelamine, iodine heptafluoride, iodoform, liquid oxygen, nitrosyl chloride,
nitrosyl perchlorate, nitryl perchlorate, perchloromelamine, peroxomonosulfuric acid, platinum, potassium tert-butoxide, strong acids, sulfur
reacts violently with bromoform and chloroform in the presence of alkalies or in contact with alkaline surfaces.
may form unstable and explosive peroxides in contact with strong oxidisers, fluorine, hydrogen peroxide (90%), sodium perchlorate,
2-methyl-1,3-butadiene
can increase the explosive sensitivity of nitromethane on contact flow or agitation may generate electrostatic charges due to low conductivity dissolves or attacks most rubber resins, and plastics (polyethylenes, polyester, vinyl ester, PVC, Neonrene, Viton).
Alcohols
are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen react with strong point, strong point
dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide,
pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
should not be heated above 49 deg. C. when in contact with aluminium equipment
Duarter isobularie
reacts with acetylene, halogens and nitrous oxides
is incompatible with chlorine dioxide, conc. nitric acid and some plastics
 may generate electrostatic charges, due to low conductivity, in flow or when agitated - these may ignite the vapour. Segregate from nickel carbony in the presence of oxygen beat (20-40 C).
 Esters react with acids to liberate heat along with alcohols and acids.
 Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products. Heat is also generated by the interaction of esters with caustic solutions.
Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
Ketones in this group:
are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides. tract violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HCIO4 (perchloric acid)
 may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.
A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared
to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion.
rnis property allows ketones, especially methyl ketones, to participate in Condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH)
Propane:
reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
 liquid attacks some plastics, rubber and coatings may accumulate static shares which may ignite its yapayre
Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction
produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA Source Ingredient Material name TWA STEL Peak Notes (bio)-Exposure can also be estimated by biological New Zealand Workplace 500 ppm / 2375 mg/m3 / acetone Acetone Not Available Exposure Standards (WES) 1185 mg/m3 1000 ppm monitoring. New Zealand Workplace 1000 ppm / ethanol Ethyl alcohol (Ethanol) Not Available Not Available Not Available Exposure Standards (WES) 1880 mg/m3 New Zealand Workplace 50 ppm / 188 Not Available toluene Toluene (Toluol) Not Available (skin)-Skin absorption Exposure Standards (WES) mg/m3 New Zealand Workplace 400 ppm / 983 1230 mg/m3 / Not Available Isopropyl alcohol Not Available isopropanol Exposure Standards (WES) mg/m3 500 ppm

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	n-butanol	n-Butyl alcohol	Not Available	Not Available	50 ppm / 150 mg/m3	(skin)-Skin absorption
New Zealand Workplace Exposure Standards (WES)	xylene	Dimethylbenzene	50 ppm / 217 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	ethyl acetate	Ethyl acetate	200 ppm / 720 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	zinc phosphate	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	zinc phosphate	Particulates not otherwise classified respirable dust	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	zinc phosphate	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	zinc phosphate	Particulates not otherwise classified	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	bisphenol A diglycidyl ether polymer	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	bisphenol A diglycidyl ether polymer	Particulates not otherwise classified respirable dust	3 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	bisphenol A diglycidyl ether polymer	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	bisphenol A diglycidyl ether polymer	Particulates not otherwise classified	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	ethylbenzene	Ethyl benzene	100 ppm / 434 mg/m3	543 mg/m3 / 125 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	butane	Butane	800 ppm / 1900 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	propane	Propane	Not Available	Not Available	Not Available	Simple asphyxiant - may present an explosion hazard

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
acetone	Not Available Not Available			Not Available
ethanol	Not Available Not Available			15000* ppm
toluene	Not Available	Not Available		Not Available
isopropanol	400 ppm	2000* ppm		12000** ppm
n-butanol	60 ppm	800 ppm		8000** ppm
xylene	Not Available	Not Available		Not Available
ethyl acetate	1,200 ppm	1,700 ppm		10000** ppm
zinc phosphate	12 mg/m3	36 mg/m3		220 mg/m3
bisphenol A diglycidyl ether polymer	90 mg/m3	990 mg/m3		5,900 mg/m3
ethylbenzene	Not Available	Not Available		Not Available
ethylene glycol monobutyl ether acetate	15 ppm	vm 35 ppm		210 ppm
butane	Not Available	Not Available		Not Available
propane	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
acetone	2,500 ppm		Not Available	
ethanol	3,300 ppm		Not Available	
toluene	500 ppm		Not Available	
isopropanol	2,000 ppm		Not Available	
n-butanol	1,400 ppm		Not Available	
xylene	900 ppm		Not Available	
ethyl acetate	2,000 ppm		Not Available	
zinc phosphate	Not Available		Not Available	
bisphenol A diglycidyl ether polymer	Not Available		Not Available	
ethylbenzene	800 ppm		Not Available	
ethylene glycol monobutyl ether acetate	Not Available		Not Available	
butane	Not Available		1,600 ppm	

Ingredient	Original IDLH	Revised IDLH
propane	2,100 ppm	Not Available

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel For ethanol:

Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition)

Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. Inhalation also causes local irritating effects to the eyes and upper respiratory tract, headaches, sensation of heat intraocular tension, stupor, fatigue and a need to sleep. At 15000 ppm there was continuous lachrymation and coughing.

For ethyl acetate:

Odour Threshold Value: 6.4-50 ppm (detection), 13.3-75 ppm (recognition)

The TLV-TWA provides a significant margin of safety from the standpoint of adverse health effects. Unacclimated subjects found the odour objectionably strong at 200 ppm. Mild nose, eye and throat irritation was experienced at 400 ppm. Workers exposed regularly at concentrations ranging from 375 ppm to 1500 ppm for several months showed no unusual signs or symptoms.

Odour Safety Factor(OSF) OSF=51 (ETHYL ACETATE)

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive American Industrial Hygiene Association Journal 57: 641-649 (1996)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550 As "A" for 50-90% of persons being distracted

C 1-26 As "A" for less than 50% of persons being distracted

- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested
- Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF) OSF=38 (ACETONE)

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE)

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available. High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known. Odour Safety Factor(OSF)

Odour Safety Factor(O OSF=17 (TOLUENE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

For n-butanol:

COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS)

Odour Threshold Value: 0.12-3.4 ppm (detection), 1.0-3.5 ppm (recognition) NOTE: Detector tubes for n-butanol, measuring in excess of 5 ppm are commercially available. Exposure at or below the TLV-TWA is thought to provide protection against hearing loss due to vestibular and auditory nerve damage in younger workers and to protect against the significant risk of headache and irritation. 25 ppm may produce mild irritation of the respiratory tract 50 ppm may produce headache and vertigo. Higher concentrations may produce marked irritation, sore throat, coughing, nausea, shortness of breath, pulmonary injury and central nervous system depression characterised by headache, dizziness, dullness and drowsiness 6000 ppm may produce giddiness, prostration, narcosis, ataxia, and death. Odour Safety Factor (OSF) OSF=60 (n-BUTANOL) for xylenes: IDI H Level: 900 ppm Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition) NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response). Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes. Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation. Odour Safety Factor(OSF) OSF=4 (XYLENE) for ethyl benzene: Odour Threshold Value: 0.46-0.60 ppm NOTE: Detector tubes for ethylbenzene, measuring in excess of 30 ppm, are commercially available. Ethyl benzene produces irritation of the skin and mucous membranes and appears to produce acute and chronic effects on the central nervous system. Animal experiments also suggest the effects of chronic exposure include damage to the liver, kidneys and testes. In spite of structural similarities to benzene, the material does not appear to cause damage to the haemopoietic system. The TLV-TWA is thought to be protective against skin and eve irritation. Exposure at this concentration probably will not result in systemic effects. Subjects exposed at 200 ppm experienced transient irritation of the eyes; at 1000 ppm there was eye irritation with profuse lachrymation; at 2000 ppm eye irritation and lachrymation were immediate and severe accompanied by moderate nasal irritation, constriction in the chest and vertigo; at 5000 ppm exposure produced intolerable irritation of the eyes and throat Odour Safety Factor(OSF) OSF=43 (ETHYL BENZENE) For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE) Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. • Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. • Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. Appropriate engineering Open-vessel systems are prohibited. • Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the controls operation. Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. Personal protection Close fitting gas tight goggles DO NOT wear contact lenses Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and Eye and face protection adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean

environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national

equivalent]

	No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: Safety glasses with side shields. NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. No special equipment required due to the physical form of the product. Safety glasses with side shields. Chemical goggles.
	the wearing of lenses may pose a special nazari, son contact lenses may about and concentrate initians. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	 NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. For esters: Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials. No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. No special equipment required due to the physical form of the product.
Body protection	See Other protection below
Other protection	 Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

COLORPAK PRO SERIES AEROSOL ET	CH PRIMER (ALL COLOURS)
--------------------------------	--------------------------

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respiratory protection not normally required due to the physical form of the product. Generally not applicable.

PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Various coloured, aerosol		
Physical state	article	Relative density (Water = 1)	0.73
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	431
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	-81	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 11 Toxicological information

Information on toxicological effects		
	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.	
	Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertice.	
	The main effects of simple aliphatic esters are narcosis and irritation and anaesthesia at higher concentrations. These effects become greater as the molecular weights and boiling points increase. Central nervous system depression , headache, drowsiness, dizziness, coma and neurobehavioral changes may also be symptomatic of overexposure. Respiratory tract involvement may produce mucous membrane irritation, dyspnea, and tachypnea, pharyngitis, bronchitis, pneumonitis and, in massive exposures, pulmonary oedema (which may be delayed). Gastrointestinal effects include nausea, vomiting, diarrhoea and abdominal cramps. Liver and kidney damage may result from massive exposures. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving	
	narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm.	
	High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsines	
	The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure. Human subjects exposed to 24 ppm n-butanol experienced mild irritation which became objectionable. Headaches were reported at 50 ppm. Exposure by mice to 6600 ppm produced signs of marked central nervous system (CNS) depression, including prostration after 2 hours, narcosis after 3 hours and some deaths.	
Inhaled	Although n-butanol is odourous and generally possesses adequate warning properties, the olfactory senses may become fatigued. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.	
	Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate	
	and low blood pressure may also occur.	
	Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. WARNING :Intentional misuse by concentrating/inhaling contents may be lethal. The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.	
	Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of	
	giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.	

Exposure to ketone vapours may produce nose, throat and mucous membrane irritation. High concentrations of vapour may produce central nervous system depression characterised by headache, vertigo, loss of coordination, narcosis and cardiorespiratory failure. Some ketones produce neurological disorders (polyneuropathy) characterised by bilateral symmetrical paresthesia and muscle weakness primarily in the legs and arms. Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema. Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent. Ingestion of ethanol (ethyl alcohol, "alcohol") may produce nausea, vomiting, bleeding from the digestive tract, abdominal pain, and diarrhoea. Effects on the body: Blood concentration Effects Mild: impaired vision, co-ordination and <1.5 a/L reaction time; emotional instability Moderate: Slurred speech, confusion, inco-ordination, emotional instability, disturbances in perception and senses, possible blackouts, and impaired objective performance in standardized tests. Possible double vision, flushing. 1.5-3.0 g/L fast heart rate, sweating and incontinence. Ingestion Slow breathing may occur rarely and fast breathing may develop in cases of metabolic acidosis, low blood sugar and low blood potassium. Central nervous system depression may progress to coma. Severe: cold clammy skin, low body temperature and low blood pressure. Atrial fibrillation and heart block have been reported. Depression of breathing may occur, respiratory failure may follow 3-5 a/L serious poisoning, choking on vomit may result in lung inflammation and swelling. Convulsions due to severe low blood sugar may also occur. Acute liver inflammation may develop. At sufficiently high doses the material may be hepatotoxic (i.e. poisonous to the liver). Signs may include nausea, stomach pains, low fever, loss of appetite, dark urine, clay-coloured stools, jaundice (yellowing of the skin or eyes) Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Swallowing of n-butanol may cause breathing difficulty, headache, nausea, vomiting, upper respiratory tract irritation, mucous membrane irritation, central nervous system depression. Swallowing 10 millilitres of isopropanol may cause serious injury; 100 millilitres may be fatal if not properly treated. The adult single lethal dose is approximately 250 millilitres. Isopropanol is twice as poisonous as ethanol, and the effects caused are similar, except that isopropanol does not cause an initial feeling of well-being. Swallowing may cause nausea, vomiting and diarrhea; vomiting and stomach inflammation is more prominent with isopropanol than with ethanol. Animals given near-lethal doses also showed inco-ordination, lethargy, inactivity and loss of consciousness There is evidence that a slight tolerance to isopropanol may be acquired. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). The material may accentuate any pre-existing dermatitis condition Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Spray mist may produce discomfort Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin Contact 511ipa

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or

produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

	Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
Eye	When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Workers exposed to 200 ppm n-butanol showed ocular symptoms including corneal inflammation, burning sensation, blurring of vision, lachrymation, and photophobia. 100 ppm produced no systemic effects and reports of irritation of the eyes was rare. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.
Chronic	Long-time sposure to respiratory immain may result in disease of the airways involving difficult brashing an related systemic problems. Practical experiments even to hit or notative with ematerial is capable elimiter of inducing a sestimation reaction in a substrate in turner of the distribution of an cause occupational astrima (also known as astrimages and respiratory sensitisers) can induce a state of specific airway hyper-responsive. The expensitive responsive to the substrates. Such active campation and the substrates with the come hyper-responsive, further equipation of an antima is proposable to distrib in advance who are likely to astron. Nat al workers who are expected to a sensitien with become hyper-responsive and is imposable to distrib in advance who are likely to astron. Nat al workers who are expected to a sensitien with become hyper-responsive. The advance who are likely to astrone is any program by programme of astrone in program of a substrates with may cause occupational astrone advance occupational astrone advance occupational astrone advance of a substrates with may cause occupation astrone and the expected to a substrate with may cause occupational astrone advance of astrone is appropriate to a substrate with may cause occupation astrone as the origon of astrone is program. These is programs and there should be appropriate to all employees exposure to sub-material advance to a substrate with may cause occupational astrone advance of astrone advance and there advance astrone advance and the advance advan

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings . The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation.

Chronic toluene habituation occurs following intentional abuse (glue sniffing) or from occupational exposure. Ataxia, incoordination and tremors of the hands and feet (as a consequence of diffuse cerebral atrophy), headache, abnormal speech, transient memory loss, convulsions, coma, drowsiness, reduced colour perception, frank blindness, nystagmus (rapid, involuntary eye-movements), hearing loss leading to deafness and mild dementia have all been associated with chronic abuse. Peripheral nerve damage, encephalopathy, giant axonopathy electrolyte disturbances in the cerebrospinal fluid and abnormal computer tomographic (CT scans) are common amongst toluene addicts. Although toluene abuse has been linked with kidney disease, this does not commonly appear in cases of occupational toluene exposures. Cardiac and haematological toxicity are however associated with chronic toluene exposures. Cardiac arrhythmia, multifocal and premature ventricular contractions and supraventricular tachycardia are present in 20% of patients who abused toluene-containing paints. Previous suggestions that chronic toluene inhalation produced human peripheral neuropathy have been discounted. However central nervous system (CNS) depression is well documented where blood toluene exceeds 2.2 mg%. Toluene abusers can achieve transient circulating concentrations of 6.5 %. Amongst workers exposed for a median time of 29 years, to toluene, no subacute effects on neurasthenic complaints and psychometric test results could be established.

The prenatal toxicity of very high toluene concentrations has been documented for several animal species and man. Malformations indicative of specific teratogenicity have not generally been found. Neonatal toxicity, described in the literature, takes the form of embryo death or delayed foetal growth and delayed skeletal system development. Permanent damage of children has been seen only when mothers have suffered from chronic intoxication as a result of "sniffing".

Serious systemic effects from exposure to n-butanol in the form of auditory and vestibular nerve damage have been reported amongst workers in France and Mexico. Audiologic impairment was produced in workers exposed to 80 ppm n-butanol with unprotected noise exposure. Workers exposed over a 15 year period (1929-1944) exhibited severe vertigo and vertiges gravis. Workers exposed from 3-11 years without personal protective equipment from noise experienced greater hearing loss (hypoacusia) in direct relation to exposure time when compared to a control group exposed to industrial noise of 90-100 dB but with n-butanol exposure. Average hearing loss was not large but the workers had central frequencies of 21.98 dB (11.59 dB minimum and 32.30 dB maximum) with a mean widening of the break between 3000 and 4000 Hz of 42.22 dB. There was a tendency of the averages to decrease as the frequencies moved away from the central zone. Affected workers were aged from 20-39 years. [ACGIH Documentation of TLVs]

Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness.

Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage.

There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol.

Animal testing showed the chronic exposure did not produce reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol.

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms.

Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Workers exposed to 700 ppm acetone for 3 hours/day for 7-15 years showed inflammation of the respiratory tract, stomach and duodenum, attacks of giddiness and loss of strength. Exposure to acetone may enhance liver toxicity of chlorinated solvents.

Continued...

	Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.		
COLORPAK PRO SERIES	ΤΟΧΙΟΙΤΥ	IRRITATION	
ALL COLOURS)	Not Available	Not Available	
	τοχιζιτγ	IRRITATION	
	Dermal (rabbit) D50: 20000 mg/kg ^[2]	Eve (human): 500 ppm - irritant	
	Inhalation(Mouse) C50: 44 mg/l 4h ^[2]	Eve (rabbit): 20mg/24hr -moderate	
	Oral (Rat) L D50: 5800 mg/kg ^[2]	Eve (rabbit): 3.95 mg - SEVERE	
acetone		Eve: adverse effect observed (irritation)[1]	
		Skin (rabbit): 500 mg/24br - mild	
		Skin (rabbit):395mg (open) - mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	τογιατγ		
		Eye (rabbit): 300 mg SEVERE	
ethonal			
etnanoi	Oral (Rat) LD50; 7060 mg/kgi ² j	Eye: adverse effect observed (irritating).	
		Skin (rabbit):20 mg/24ni-mouerate	
		Skin: no adverse effect observed (not irritating)[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: 12124 mg/kg ^[2]	Eye (rabbit): 2mg/24h - SEVERE	
	Inhalation(Rat) LC50; >13350 ppm4h ^[2]	Eye (rabbit):0.87 mg - mild	
	Oral (Rat) LD50; 636 mg/kg ^[2]	Eye (rabbit):100 mg/30sec - mild	
toluene		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):20 mg/24h-moderate	
		Skin (rabbit):500 mg - moderate	
		Skin: adverse effect observed (irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙCITY	IRRITATION	
	Dermal (rabbit) LD50: 12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate	
isopropanol	Inhalation(Mouse) LC50; 53 mg/L4h ^[2]	Eye (rabbit): 100 mg - SEVERE	
	Oral (Mouse) LD50; 3600 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate	
		Skin (rabbit): 500 mg - mild	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: 3400 mg/kg ^[2]	Eye (human): 50 ppm - irritant	
	Inhalation(Rat) LC50; 8000 ppm4h ^[2]	Eye (rabbit): 1.6 mg-SEVERE	
n-butanol	Oral (Rat) LD50; 790 mg/kg ^[2]	Eye (rabbit): 24 mg/24h-SEVERE	
		Eye: adverse effect observed (irreversible damage) ^[1]	
		Skin (rabbit): 405 mg/24h-moderate	
		Skin: adverse effect observed (irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
	Inhalation(Rat) LC50; 5000 ppm4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE	
xylene	Oral (Mouse) LD50; 2119 mg/kg ^[2]	Eye (rabbit): 87 mg mild	
		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):500 mg/24h moderate	
		Skin: adverse effect observed (irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >18000 mg/kg ^[2]	Eye (human): 400 ppm	
ethyl acetate	Inhalation(Mouse) LC50; >18 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Mouse) LD50; 4100 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	

	ΤΟΧΙCΙΤΥ	IRRITATION
zinc phosphate	Oral (Rat) LD50; >5000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙΟΙΤΥ	IRRITATION
bisphenol A diglycidyl ether	dermal (rat) LD50: >1200 mg/kg ^[2]	Not Available
polymor	Oral (Mouse) LD50; >500 mg/kg ^[2]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: 17800 mg/kg ^[2]	Eye (rabbit): 500 mg - SEVERE
ethylbenzene	Inhalation(Rat) LC50; 17.2 mg/l4h ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50; 3500 mg/kg ^[2]	Skin (rabbit): 15 mg/24h mild
		Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙΟΙΤΥ	IRRITATION
ethylene glycol monobutyl	Dermal (rabbit) LD50: 1500 mg/kg ^[2]	Eye (rabbit): 500 mg/24hr - mild
etner acetate	Oral (Rat) LD50; 2400 mg/kg ^[2]	Skin (rabbit): 500 mg - mild
butane	тохісіту	IRRITATION
	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available
propane	тохісіту	IRRITATION
	Inhalation(Rat) LC50; >13023 ppm4h ^[1]	Not Available
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise	

COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS)	Data demonstrate that during inhalation exposure aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to bioaccumulate in the body. Setelive partitioning of the aromatic hydrocarbons rate unlikely to bioaccumulate in the body. Setelive partitioning of the aromatic hydrocarbons rates is unlikely. No data is available regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern occurring with inhaliation exposure. Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation of glycine, sulfation or glycuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylatheranes and consists of. (1) oxidation of one of the alkyl groups to an alcohol moley. (2) oxidation of the hydroxylop to a carboxylic acid. (3) the carboxylic acid s then conjugated with glycine to form a hippunc acid. The minor metabolites and a carboxine muture of isometric hiphenosis, the sulfate and glucuronidae conjugates of dimethylatheravia latchols, dimethylatheravia and an dimethylatowers of their own metabolites. The sulfate and glucuronidae conjugates of an alcohol moley. (2) oxidation of the unmetabolized and dimethylatopurc acids. Consistent with he low propensity for bioaccumulation of aromatic hydrocarbons, presumably due to the first pass effect in the live. Under these circumstances, urinary excretion of metabolites is the dominant toute of excretion. Servetion of the 51 detabolites. When oral alignhatic acyclic primary alcohols and alignhatic linear saturated carboxylic acids are metabolized or the other substances are hydroly-following hydrolysis the component alcohols and carboxylic acids is the dominant tout of excretion. Servetion of the 51 detabolites with extenses of alighhatic acyclic primary alcohols and alighhatic linear saturated carboxylic acids are netab

	ERR-gamma (dissociation constant = 5.5 nM), but not to the estrogen receptor (ER). BPA binding to ERR-gamma preserves its basal constitutive activity.Different expression of ERR-gamma in different parts of the body may account for variations in bisphenol A effects. For instance, ERR-gamma has been found in high concentration in the placenta, explaining reports of high bisphenol A accumulation there
TOLUENE	 Exception to los per number of the process of the process of high despheric A accumulation mere For foluenci Acute Toxicity Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies. Humans - Toluene ingestion or inhabition can result in severe central nervous system depression, and in large doses, can act as a narcotic. The Constriction and nercosis of myocardial fibers, markadly swollen liver, congestion and hearnorhage of the lungs and acute tubular necrosis were found on autopsy. Central nervous system effects (headaches, dizziness, intoxication) and eye inflation occurred following inhalation exposure to 100 pm to tubuene 6 hours/day for 4 days. Exposure to 500 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea - toluen can also strip the skin of lipids causing demantitis. Animals - The initial effects are instability and incoordination, lachrymation and smiffles (respiratory exposure), followed by narcosis. Animals de of respiratory faulter from severe nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occurs as a result from both oral and the inhalation exposure. A reported lowes-bosevered-effect level in humans for adverse enurobehavioral effects is 80 pm. Humans - Thourina cocurs, as an end incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in negator spore respiratory system, the liver, and the kidney. Adverse effects occurs acros as the liver both oral and endot negatory exposure for a system. Repeat doses of toluene fumes reported leukopenia and neutropenia. Exposure levels were norti
ISOPROPANOL	For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmoary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the t

N-BUTANOL	for n-butanol Acute toxicity: n-Butanol (BA) was only slightly toxic to experimental animals following acute oral, dermal, or inhalation exposure. The acute oral LD50 values for female rats ranged from 790 to 4360 mg/kg. Different strains of rat were used in each of four studies, which may account for the variability. Oral LD50 values for mice, rabbits, hamsters, dogs, and male rats all fell within the same range. The rat inhalation LC0 of 8000 ppm (24000 mg/m3) indicates very low inhalation toxicity (no lethality at 8000 ppm). The rabbit dermal LD50 was 3402 mg/kg, indicating that BA can penetrate the skin, but not very readily. Animal experiments and human experience indicate that BA is, at most, moderately irritating to the skin, but it is a severe eye irritant. These effects are most likely due to BA s localised defating and drying characteristics. Although no animal data are available, human studies and experience show that BA is not likely to be a skin sensitiser. The median odor threshold for BA (0.17 ppm) is well below the lowest nasal irritation threshold in humans (289 ppm), allowing warning of possible chemical exposure prior to nasal irritation occurring. Human studies are complicated by the odor characteristics of the material, as the odor threshold is well below the levels at which irritation is observed. Repeat dose toxicity: An in vivo toxicokinetics study confirmed the rapid metabolism of n-butyl acetate (BAc) to BA. Hydrolysis of BAc in blood and brain was estimated to be 99 percent complete within 2.7 minutes (elimination t1/2 = 0.41 minute). Thus, organisms exposed to BAc can experience appreciable tissue concentrations of BA. In this way, the results of toxicity studies with BAc can be used as supplemental, surrogate data to provide information on the toxicity of BA. A thiteen-week, subchronic neurotoxicity study under the same exposure conditions showed no evidence of cumulative neurotoxicity even at 3000 ppm. A concurrent subchronic neurotoxicity study under the same exposure conditions
	Carcinogenicity: Based upon the battery of negative mutagenicity and clastogenicity findings, BA presents a very small potential for carcinogenicity.
XYLENE	Reproductive effector in rats
BISPHENOL A DIGLYCIDYL ETHER POLYMER	In their, versitie appression to depress an augustry time (BAUSE) (1, 10, or too might) for 13 weeks produced million addered ethance and appression of BADGE (10, 100, or 1000 might) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect tevel (NCEL) for dermal exposure was 100 might for both sexes. In a separate subtay, application of BADGE (10, no decrease) how they prove the for 13 weeks no only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and s 100 mg/kg internals (as well as in a satellite group of females given 100 mg/kg). Reproductive and Developmental Toxitigy: EADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all meas the mind dose and in both males and females at the high dose. Duri had no reproductive effects. The NCEL for reproductive effects was 750 mg/kg. Carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was 'Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In all fetine tumourgine(int) study and 204 of C34 mines. The NCEL (10, 10, 00 mg/kg) how as also reported to be noncarcinogenic to the skin of C37 limits. However, weakly carcinogenic to the skin of C37 Limits developed a papiloma after 16 monts. A retest, in which sin paintings were do BADGE (10, 00, 010 mg/kg) adveloped veloped by Canter et al., 1980). In a diverse introduces of tumours (Wei et al. 1963). In advected (114 ce 2000 mg/kg) advected velopmental excitagenicity in the start Cavity (U.S. EPA, 1997). Cool of mg/kg indevelop veloped by Canter et al., 1980), the wayse indexas, (male Enfert 344 rata demaind and 1455 (SADEE (10, 00, 000 mg/kg) advected velopmental acarcinogenicity but did have low incidences of tumours in the crait cavity (U.S. EPA, 1997). The spot test, BADGE (10, 00 mg/kg), and cominant testhal cassay (-3000 mg/kg). Wiethon ADA (11455, EADAEE (10, 10, 000

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood. A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes. Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro: such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children. Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs. Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification). BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings . The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity... Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the live and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and ETHYL BENZENE liver toxicity was described as hepatocellular syncitial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. mae The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce coniunctivitis. For ethylene alvcol: ETHYLENE GLYCOL Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed MONOBUTYL ETHER through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body ACETATE according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol.

dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycine.

Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12- 24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol. Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown.

Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia.

Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria , and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy.

Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion. Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months.

Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multigeneration studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration. Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight.

Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol.

Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available in vivo and in vitro laboratory studies provide consistently negative genotoxicity results for ethylene glycol.

For ethylene glycol monoalkyl ethers and their acetates (EGMAEs):

Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates.

EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers.

Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LCO > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBE to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolybinuia were observed in some of the human cases, it is not clear if this was due to haemolysis or haemodilution as a result of administration of large volumes of fluid. Red blood cells of humans are many-fold more resistant to toxicity from EGPE and EGBE *in vitro* than those of rats.

Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*.

Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in *S. typhimurium* strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. *In vitro* cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic.

PROPANE	 Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes). Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic. The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE). No significant acute toxicological data identified in literature search. 				
	Asthma-like symptoms may continue for months or ev	ven years after exposure to the materi	al ends. This may be due to a non-allergic condition		
COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS) & ISOPROPANOL & N-BUTANOL & ETHYL ACETATE	criteria for diagnosing RADS include the absence of p asthma-like symptoms within minutes to hours of a do airflow pattern on lung function tests, moderate to sev lymphocytic inflammation, without eosinophilia. RADS the concentration of and duration of exposure to the in result of exposure due to high concentrations of irritat disorder is characterized by difficulty breathing, cough	DS) which can occur after exposure to previous airways disease in a non-atop occumented exposure to the irritant. Oth vere bronchial hyperreactivity on meth 6 (or asthma) following an irritating inh rritating substance. On the other hand ing substance (often particles) and is a and mucus production.	o high levels of highly firitating compound. Main bic individual, with sudden onset of persistent her criteria for diagnosis of RADS include a reversible acholine challenge testing, and the lack of minimal alation is an infrequent disorder with rates related to , industrial bronchitis is a disorder that occurs as a completely reversible after exposure ceases. The		
COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS) & BISPHENOL A DIGLYCIDYL ETHER POLYMER	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics. Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained tw				
COLORPAK PRO SERIES AEROSOL ETCH PRIMER (ALL COLOURS) & ACETONE	for acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with				
ACETONE & ISOPROPANOL & ETHYLBENZENE & ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE	The material may cause skin irritation after prolonged dermatitis is often characterised by skin redness (eryt spongy layer (spongiosis) and intracellular oedema of	or repeated exposure and may produ hema) and swelling epidermis. Histolo the epidermis.	ice a contact dermatitis (nonallergic). This form of ogically there may be intercellular oedema of the		
ETHANOL & TOLUENE & N-BUTANOL & XYLENE	The material may cause skin irritation after prolonged dermatitis is often characterised by skin redness (eryt spongy layer (spongiosis) and intracellular oedema of	or repeated exposure and may produ hema) and swelling the epidermis. His the epidermis.	ice a contact dermatitis (nonallergic). This form of stologically there may be intercellular oedema of the		
ISOPROPANOL & XYLENE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or lim	ited in animal testing.			
N-BUTANOL & XYLENE & ETHYLBENZENE	The material may produce severe irritation to the eye produce conjunctivitis.	causing pronounced inflammation. Re	epeated or prolonged exposure to irritants may		
Acute Toxicity	×	Carcinogenicity	≁		

Continued...

Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	*	STOT - Repeated Exposure	*
Mutagenicity	×	Aspiration Hazard	×
		Legend: 🗙 – Data either r	not available or does not fill the criteria for classification

Data entre not available of does not min the chiena in
 Data available to make classification

SECTION 12 Ecological information

xicity							
COLORPAK PRO SERIES	Endpoint	Test Duration (hr)	Species			Value	Source
AEROSOL ETCH PRIMER (ALL COLOURS)	Not Available	Not Available	Not Avai	lable		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	•	Source
	NOEC(ECx)	12h	Fish		0.001	mg/L	4
acetone	EC50	48h	Crustacea		6098	.4mg/L	5
	EC50	96h	Algae or oth	er aquatic plants	9.873	3-27.684mg/l	4
	LC50	96h	Fish		3744	.6-5000.7mg/L	4
	Endpoint	Test Duration (hr)	Species			Value	Source
	EC50	72h	Algae or	other aquatic plants		275mg/l	2
	EC50(ECx)	96h	Algae or	other aquatic plants		<0.001mg/L	4
ethanol	EC50	48h	Crustace	a		>79mg/L	4
	EC50	96h	Algae or	other aquatic plants		<0.001mg/L	4
	LC50	96h	Fish			>100mg/l	2
	Endpoint	Test Duration (hr)	Species			Value	Source
	NOEC(ECx)	168h	Crustace	а		0.74mg/L	5
toluene	EC50	48h	Crustace	а		3.78mg/L	5
toruerie	EC50	96h		other aquatic plants		>376 71mg/l	4
	LC50	96h	Fish			5-35mg/l	4
	Endpoint	Test Duration (hr)	Species	Species		Value	Source
	EC50	72h	Algae o	Algae or other aquatic plants		>1000mg/l	1
	EC50(ECx)	24h	Algae or other aquatic plants		0.011mg/l	4	
isopropanol	EC50		Crustacea		7550mg/l		
	EC50	4011 06b	Algae or other aquatic plants		> 1000mg/l	4	
	LC50	96h	Fish	Fish		4200mg/l	4
	Endpoint	Test Duration (hr)	Species			Value	Source
	NOEC(ECx)	504h	Crustace	a		4.1mg/l	2
	EC50	72h	Algae or	Algae or other aquatic plants		>500ma/l	1
n-butanol	EC50	48h	Crustace	Crustacea		>500ma/l	1
	EC50	96h	Algae or	other aquatic plants		225mg/l	2
	LC50	96h	Fish			100-500mg/l	4
	Endpoint	Test Duration (hr)	Specie	25		Value	Source
	EC50	72h	Algae	or other aquatic plants		4.6mg/l	2
xylene	NOEC(ECx)	73h	Algae	or other aquatic plants		0.44mg/l	2
-	EC50	48h	Crusta	сеа		1.8mg/l	2
	LC50	96h	Fish	Fish 2		2.6mg/l	2
	Endpoint	Test Duration (hr)	Specie	Species		Value	Source
	NOEC(ECx)	72h	Algae o	or other aquatic plants		>100mg/l	1
ethyl acetate	EC50	48h	Crustad	Crustacea 16		164mg/l	1
	LC50	96h	Fish			>75.6mg/l	2
	Endpoint	Test Duration (hr)	Species	8		Value	Source
zinc phosphate	EC50(ECx)	24h	Crustac	ea		0.22mg/l	2
	EC50	48h	Crustac	ea		>1.08mg/l	2

	Endpoint	Test Duration (hr)		Species		Value	Source
bisphenol A diglycidyl ether polymer	EC50(ECx)	24h		Crustacea		3mg/l	Not Available
	EC50	48h		Crustacea		~2mg/l	2
	LC50	96h		Fish		2.4mg/l	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Value	
	EC50	72h	A	lgae or other aquatic plants	4.6m	g/l	1
	NOEC(ECx)	720h	F	ish	0.381	mg/L	4
ethylbenzene	EC50	48h	C	rustacea	1.37-	4.4mg/l	4
	EC50	96h	A	lgae or other aquatic plants	3.6m	g/l	2
	LC50	96h	F	ish	3.381	-4.075mg/L	4
	Endpoint	Test Duration (hr)	Species		Value	Value	
	EC50	72h	A	lgae or other aquatic plants	>500	mg/l	1
ethylene glycol monobutyl	EC10(ECx)	48h	С	rustacea	6.9m	g/I	2
ether acetate	EC50	48h	С	rustacea	37mg	/I	1
	LC50	96h	Fish 101.75		5-143mg/l	Not Available	
	Endpoint	Test Duration (hr)		Species		Value	Source
	EC50(ECx)	96h		Algae or other aquatic plants		7.71mg/l	2
butane	EC50	96h		Algae or other aquatic plants		7.71mg/l	2
	LC50	96h		Fish		24.11mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Source
	EC50(ECx)	96h		Algae or other aquatic plants		7.71mg/l	2
propane	EC50	96h		Algae or other aquatic plants 7.		7.71mg/l	2
	LC50	96h		Fish		24.11mg/l	2
Legend:	Extracted from Ecotox databas	1. IUCLID Toxicity Data 2. Europe EC e - Aquatic Toxicity Data 5. ECETOC	CHA Registered	l Substances - Ecotoxicological Inform d Assessment Data 6. NITE (Japan) -	ation - Aquatio Bioconcentrat	: Toxicity 4. l	US EPA, IETI (Japan)

- Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

I drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility

Iethal effects on fish by coating gill surfaces, preventing respiration

+ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and

▶ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes >naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Ethanol:

log Kow: -0.31 to -0.32; Koc 1: Estimated BCF= 3; Half-life (hr) air: 144; Half-life (hr) H2O surface water: 144; Henry's atm m3 /mol: 6.29E-06; BOD 5 if unstated: 0.93-1.67,63% COD: 1.99-2.11,97%;

ThOD : 2.1.

Environmental Fate: Terrestrial - Ethanol quickly biodegrades in soil but may leach into ground water; most is lost by evaporation. Ethanol is expected to have very high mobility in soil. Volatilization of ethanol from moist soil surfaces is expected to be an important fate process. The potential for volatilization of ethanol from dry soil surfaces may exist. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms.

Atmospheric Fate: Ethanol is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days. Ethanol readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition.

Aquatic Fate: When released into water ethanol readily evaporates and is biodegradable. Ethanol is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and volatilization half-lives for a model river and model lake are 3 and 39 days, respectively. Bioconcentration in aquatic organisms is considered to be low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol and is unlikely to be persistent in aquatic environments.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants. Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfore) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl])methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to

relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L-was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga loschrysis galbana was more tolerant to diesel fuel, with a 24-hour lovest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For isopropanol (IPA): log Kow :-0.16- 0.28 Half-life (hr) air : 33-84 Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97% ThOD : 2.4 BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy

radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry s Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days). IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03.

IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms.

Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test.

For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9 **Environmental Fate**

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilistion from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported.

Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane.

For Propane: Koc 460. log Kow 2.36.

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. For Toluene:

log Kow : 2.1-3; log Koc : 1.12-2.85; Koc : 37-260; log Kom : 1.39-2.89; Half-life (hr) air : 2.4-104; Half-life (hr) H2O surface water : 5.55-528; Half-life (hr) H2O ground : 168-2628; Half-life (hr) H2O ground : 168-2628; Half-life (hr) soil : <48-240; Henry's Pa m3 /mol : 518-694; Henry's Pa m3 /mol : 5.94; E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%; ThOD - 3.13 ; BCF - 1.67-380; log BCF - 0.22-3.28.

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal. Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

for acetone:

log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2 BCF: 0.69

Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades.

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available.

Soil Guidelines: none available.

Air Quality Standards: none available

Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l Aquatic invertebrate 2100 - 16700 mg/l Aquatic plant NOEC: 5400-7500 mg/l

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air		
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)		
ethanol	LOW (Half-life = 2.17 days)	LOW (Half-life = 5.08 days)		
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)		
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)		
n-butanol	LOW (Half-life = 54 days)	LOW (Half-life = 3.65 days)		
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)		
ethyl acetate	LOW (Half-life = 14 days)	LOW (Half-life = 14.71 days)		
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)		
ethylene glycol monobutyl ether acetate	LOW	LOW		
butane	LOW	LOW		
propane	LOW	LOW		

Bioaccumulative potential

Ingredient	Bioaccumulation
acetone	LOW (BCF = 0.69)
ethanol	LOW (LogKOW = -0.31)
toluene	LOW (BCF = 90)
isopropanol	LOW (LogKOW = 0.05)
n-butanol	LOW (BCF = 0.64)
xylene	MEDIUM (BCF = 740)
ethyl acetate	HIGH (BCF = 3300)
ethylbenzene	LOW (BCF = 79.43)
ethylene glycol monobutyl ether acetate	LOW (BCF = 3.2)
butane	LOW (LogKOW = 2.89)
propane	LOW (LogKOW = 2.36)

Mobility in soil

Ingredient	Mobility
acetone	HIGH (KOC = 1.981)
ethanol	HIGH (KOC = 1)
toluene	LOW (KOC = 268)
isopropanol	HIGH (KOC = 1.06)
n-butanol	MEDIUM (KOC = 2.443)
ethyl acetate	LOW (KOC = 6.131)
ethylbenzene	LOW (KOC = 517.8)
ethylene glycol monobutyl ether acetate	LOW (KOC = 10)
butane	LOW (KOC = 43.79)
propane	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Waste treatment methods	
Product / Packaging disposal	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was ench faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010

DO NOT allow wash water from cleaning or process equipment to enter drains.
It may be necessary to collect all wash water for treatment before disposal.
In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
Where in doubt contact the responsible authority.
Consult State Land Waste Management Authority for disposal.
 Discharge contents of damaged aerosol cans at an approved site.
Allow small quantities to evaporate.
DO NOT incinerate or puncture aerosol cans.
 Bury residues and emptied aerosol cans at an approved site.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to

(1) a blast overpressure of more than 9 kPa; or

(2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 Transport information

Labels Required Image: Marine Pollutant Mo HAZCHEM Not Applicable

UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 63; 190; 277; 327; 344; 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950				
UN proper shipping name	Aerosols, flammable				
Transport hazard class(es)	ICAO/IATA Class2.1ICAO / IATA SubriskNot ApplicableERG Code10L				
Packing group	Not Applicable	Not Applicable			
Environmental hazard	Not Applicable				
	Special provisions		A145 A167 A802		
	Cargo Only Maximum Oty / Pack		150 kg		
Special precautions for user	Passenger and Cargo Packing Instructions		203		
	Passenger and Cargo	Maximum Qty / Pack	75 kg		
	Passenger and Cargo	Limited Quantity Packing Instructions	Y203		
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G		

Sea transport (IMDG-Code / GGVSee)

UN number	1950
UN proper shipping name	AEROSOLS

Transport hazard class(es)	IMDG Class IMDG Subrisk	2.1 Not Applicable		
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number Special provisions Limited Quantities	F-D, S-U 63 190 277 327 344 381 959 1000 ml		

Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
acetone	Not Available
ethanol	Not Available
toluene	Not Available
isopropanol	Not Available
n-butanol	Not Available
xylene	Not Available
ethyl acetate	Not Available
zinc phosphate	Not Available
bisphenol A diglycidyl ether polymer	Not Available
ethylbenzene	Not Available
ethylene glycol monobutyl ether acetate	Not Available
butane	Not Available
propane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
acetone	Not Available
ethanol	Not Available
toluene	Not Available
isopropanol	Not Available
n-butanol	Not Available
xylene	Not Available
ethyl acetate	Not Available
zinc phosphate	Not Available
bisphenol A diglycidyl ether polymer	Not Available
ethylbenzene	Not Available
ethylene glycol monobutyl ether acetate	Not Available
butane	Not Available
propane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002517	Aerosols Flammable Carcinogenic Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

acetone is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data toluene is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification International Agency for Research on Cancer (IARC) - Agents Classified by the IARC of Chemicals - Classification Data Monographs New Zealand Inventory of Chemicals (NZIoC) New Zealand Approved Hazardous Substances with controls New Zealand Workplace Exposure Standards (WES) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals isopropanol is found on the following regulatory lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data Monographs New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals n-butanol is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data xylene is found on the following regulatory lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Monographs of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals ethyl acetate is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data zinc phosphate is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Manufactured Nanomaterials (MNMS) of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals bisphenol A diglycidyl ether polymer is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Inventory of Chemicals (NZIoC) New Zealand Approved Hazardous Substances with controls New Zealand Workplace Exposure Standards (WES) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals ethylbenzene is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals International Agency for Research on Cancer (IARC) - Agents Classified by the IARC New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Monographs of Chemicals - Classification Data International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans New Zealand Inventory of Chemicals (NZIoC) New Zealand Approved Hazardous Substances with controls New Zealand Workplace Exposure Standards (WES) ethylene glycol monobutyl ether acetate is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Inventory of Chemicals (NZIoC) of Chemicals butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Workplace Exposure Standards (WES)

New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

of Chemicals - Classification Data Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Closed Containers)	Quantity (Open Containers)
2.1.2A	3 000 L (aggregate water capacity)	3 000 L (aggregate water capacity)

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.5A or 6.5B	120	1	3	
2.1.2A				1L (aggregate water capacity)

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (acetone; ethanol; toluene; isopropanol; n-butanol; xylene; ethyl acetate; bisphenol A diglycidyl ether polymer; ethylbenzene; ethylene glycol monobutyl ether acetate; butane; propane)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (zinc phosphate; bisphenol A diglycidyl ether polymer)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	15/07/2022
Initial Date	14/07/2022

SDS Version Summary

Version	Date of Update	Sections Updated
0.2	14/07/2022	Classification, Ingredients, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.