COLORGUN PROPELLANT ## Import Distribution t/a Formula Version No: 1.2 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Chemwatch Hazard Alert Code: 4 Issue Date: **12/08/2022** Print Date: **12/08/2022** L.GHS.NZL.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|----------------------------| | Product name | COLORGUN PROPELLANT | | Chemical Name | Not Applicable | | Synonyms | CPA0281; CJS121,CJS120 | | Proper shipping name | PETROLEUM GASES, LIQUEFIED | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. #### Details of the supplier of the safety data sheet | Registered company name | Import Distribution t/a Formula | |-------------------------|--| | Address | 60B Cryers Road, East Tamaki Auckland 2013 New Zealand | | Telephone | 09 273 3600 | | Fax | Not Available | | Website | www.formula.co.nz | | Email | sales@formula.co.nz | ### Emergency telephone number | Association / Organisation | NZ Poison Centre | |-----------------------------------|------------------| | Emergency telephone numbers | 0800 764 766 | | Other emergency telephone numbers | Not Available | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. #### ChemWatch Hazard Ratings | | | Min | Max | | |--------------|---|-----|-----|--| | Flammability | 4 | | | | | Toxicity | 1 | | | 0 = Minimum | | Body Contact | 0 | | 1 | 1 = Low
2 = Moderate
3 = High
4 = Extreme | | Reactivity | 0 | | | | | Chronic | 0 | | | | | Classification [1] | Flammable Gases Category 1A | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 2.1.1A | ### Label elements Hazard pictogram(s) Signal word Dange Version No: **1.2** Page **2** of **14** Issue Date: **12/08/2022** #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 #### Hazard statement(s) H220 Extremely flammable gas. #### Precautionary statement(s) Prevention P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. ### Precautionary statement(s) Response | P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. | |------|---| | P381 | In case of leakage, eliminate all ignition sources. | #### Precautionary statement(s) Storage P403 Store in a well-ventilated place. #### Precautionary statement(s) Disposal Not Applicable Not Applicable #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | | |-----------|--|---------------|--| | 106-97-8. | 70-80 | <u>butane</u> | | | 74-98-6 | 15-30 | propane | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | ► Generally not applicable. | |--------------|--| | Skin Contact | ► Generally not applicable. | | Inhalation | Following exposure to gas, remove the patient from the gas source or contaminated area. NOTE: Personal Protective Equipment (PPE), including positive pressure self-contained breathing apparatus may be required to assure the safety of the rescuer. Prostheses such as false teeth, which may block the airway, should be removed, where possible, prior to initiating first aid procedures. If the patient is not breathing spontaneously, administer rescue breathing. If the patient does not have a pulse, administer CPR. If medical oxygen and appropriately trained personnel are available, administer 100% oxygen. Summon an emergency ambulance. If an ambulance is not available, contact a physician, hospital, or Poison Control Centre for further instruction. Keep the patient warm, comfortable and at rest while awaiting medical care. MONITOR THE BREATHING AND PULSE, CONTINUOUSLY. Administer rescue breathing (preferably with a demand-valve resuscitator, bag-valve mask-device, or pocket mask as trained) or CPR if necessary. Generally not applicable. | | Ingestion | Not considered a normal route of entry. Generally not applicable. | #### Indication of any immediate medical attention and special treatment needed For frost-bite caused by liquefied petroleum gas: - If part has not thawed, place in warm water bath (41-46 C) for 15-20 minutes, until the skin turns pink or red. - Analgesia may be necessary while thawing. - If there has been a massive exposure, the general body temperature must be depressed, and the patient must be immediately rewarmed by whole-body immersion, in a bath at the above temperature. - Shock may occur during rewarming. - Administer tetanus toxoid booster after hospitalization. - ▶ Prophylactic antibiotics may be useful. - ▶ The patient may require anticoagulants and oxygen. [Shell Australia 22/12/87] For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. - Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. Version No: 1.2 Page 3 of 14 Issue Date: 12/08/2022 #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 BP America Product Safety & Toxicology Department For gas exposures: #### BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. - Administer oxygen by non-rebreather mask at 10 to 15 l/min. - Monitor and treat, where necessary, for pulmonary oedema. - Monitor and treat, where necessary, for shock. - Anticipate seizures. #### ADVANCED TREATMENT ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of
hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - Proparacaine hydrochloride should be used to assist eye irrigation. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 ### **SECTION 5 Firefighting measures** #### Extinguishing media DO NOT EXTINGUISH BURNING GAS UNLESS LEAK CAN BE STOPPED SAFELY: OTHERWISE: LEAVE GAS TO BURN. #### FOR SMALL FIRE: - ▶ Dry chemical, CO2 or water spray to extinguish gas (only if absolutely necessary and safe to do so). - DO NOT use water jets #### FOR LARGE FIRE: - ▶ Cool cylinder by direct flooding quantities of water onto upper surface until well after fire is out. - ▶ DO NOT direct water at source of leak or venting safety devices as icing may occur. #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters | Fire Fighting | Slight hazard when exposed to heat, flame and oxidisers. | |-----------------------|---| | Fire/Explosion Hazard | HIGHLY FLAMMABLE: will be easily ignited by heat, sparks or flames. Will form explosive mixtures with air Fire exposed containers may vent contents through pressure relief valves thereby increasing fire intensity and/ or vapour concentration. Vapours may travel to source of ignition and flash back. Containers may explode when heated - Ruptured cylinders may rocket Fire may produce irritating, poisonous or corrosive gases. Runoff may create fire or explosion hazard. May decompose explosively when heated or involved in fire. High concentration of gas may cause asphyxiation without warning. Contact with gas may cause burns, severe injury and/ or frostbite. Combustion products include: carbon monoxide (CO) date of the pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. | ### **SECTION 6 Accidental release measures** ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up - Avoid breathing vapour and any contact with liquid or gas. Protective equipment including respirator should be used. - DO NOT enter confined spaces where gas may have accumulated. - ▶ Shut off all sources of possible ignition and increase ventilation. ### **Minor Spills** - Clear area of personnel. ► Stop leak only if safe to so do. - Remove leaking cylinders to safe place. release pressure under safe controlled conditions by opening valve. - ▶ Orientate cylinder so that the leak is gas, not liquid, to minimise rate of leakage Version No: **1.2** Page **4** of **14** Issue Date: **12/08/2022** #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 - Keep area clear of personnel until gas has dispersed. - ▶ Clear area of all unprotected personnel and move upwind. - Alert Emergency Authority and advise them of the location and nature of hazard. - ▶ May be violently or explosively reactive. - Wear full body clothing with breathing apparatus. - Prevent by any means available, spillage from entering drains and water-courses. - Consider evacuation. - Shut off all possible sources of ignition and increase ventilation. - No smoking or naked lights within area. - ▶ Use extreme caution to prevent violent reaction. - Stop leak only if safe to so do. - ▶ Water spray or fog may be used to disperse vapour. - DO NOT enter confined space where gas may have collected. - Keep area clear until gas has dispersed. #### **Major Spills** - ▶ Remove leaking cylinders to a safe place. - Fit vent pipes. Release pressure under safe, controlled conditions - Burn issuing gas at vent pipes. - DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. - Clean up all spills immediately. - Wear protective clothing, safety glasses, dust mask, gloves. - ► Secure load if safe to do so. Bundle/collect recoverable product. - Use dry clean up procedures and avoid generating dust. - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Water may be used to prevent dusting. - Collect remaining material in containers with covers for disposal - Flush spill area with water. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling #### Precautions for safe handling Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO] - Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Consider use in closed pressurised systems, fitted with temperature, pressure and safety relief valves which are vented for safe dispersal. Use only properly specified equipment which is suitable for this product, its supply pressure and temperature - The tubing network design connecting gas cylinders to the delivery system should include appropriate pressure indicators and vacuum or suction lines. - · Fully-welded types of pressure gauges, where the bourdon tube sensing element is welded to the gauge body, are recommended. - Before connecting gas cylinders, ensure manifold is mechanically secure and does not containing another gas. Before disconnecting gas cylinder, isolate supply line segment proximal to cylinder, remove trapped gas in supply line with aid of vacuum pump - When connecting or replacing cylinders take care to avoid airborne particulates violently ejected when system pressurises. - · Consider the use of doubly-contained piping; diaphragm or bellows sealed, soft seat valves; backflow prevention devices; flash arrestors; and flow monitoring or limiting devices. Gas cabinets, with appropriate exhaust treatment, are recommended, as is automatic monitoring of the secondary enclosures and work areas for release. - Use a pressure reducing regulator when connecting cylinder to lower pressure (<100 psig) piping or systems - Use a check valve or trap in the discharge line to prevent hazardous back-flow into
the cylinder - Check regularly for spills or leaks. Keep valves tightly closed but do not apply extra leverage to hand wheels or cylinder keys. - $\boldsymbol{\cdot}$ $\,$ Open valve slowly. If valve is resistant to opening then contact your supervisor - Valve protection caps must remain in place must remain in place unless container is secured with valve outlet piped to use point. - · Never insert a pointed object (e.g hooks) into cylinder cap openings as a means to open cap or move cylinder. Such action can inadvertently turn the valve and gas a gas leak. Use an adjustable strap instead of wrench to free an over-tight or rusted cap. - A bubble of gas may buildup behind the outlet dust cap during transportation, after prolonged storage, due to defective cylinder valve or if a dust cap is inserted without adequate evacuation of gas from the line. When loosening dust cap, preferably stand cylinder in a suitable enclosure and take cap off slowly. Never face the dust cap directly when removing it; point cap away from any personnel or any object that may pose a hazard. under negative pressure (relative to atmospheric gas) - \cdot Suck back of water into the container must be prevented. Do not allow backfeed into the container. - Do NOT drag, slide or roll cylinders use a suitable hand truck for cylinder movement - Test for leakage with brush and detergent NEVER use a naked flame - Do NOT heat cylinder by any means to increase the discharge rate of product from cylinder. - Leaking gland nuts may be tightened if necessary. - If a cylinder valve will not close completely, remove the cylinder to a well ventilated location (e.g. outside) and, when empty, tag as FAULTY and return to supplier. - Obtain a work permit before attempting any repairs. - DO NOT attempt repair work on lines, vessels under pressure - Atmospheres must be tested and O.K. before work resumes after leakage. - Avoid generation of static electricity. Earth all lines and equipment. - DO NOT transfer gas from one cylinder to another. Version No: 1.2 Page 5 of 14 Issue Date: 12/08/2022 #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 - Cylinders should be stored in a purpose-built compound with good ventilation, preferably in the open. - Such compounds should be sited and built in accordance with statutory requirements - ▶ The storage compound should be kept clear and access restricted to authorised personnel only. - Cylinders stored in the open should be protected against rust and extremes of weather. - Cylinders in storage should be properly secured to prevent toppling or rolling. - Cylinder valves should be closed when not in use - Where cylinders are fitted with valve protection this should be in place and properly secured. - Gas cylinders should be segregated according to the requirements of the Dangerous Goods Act(s). - Cylinders containing flammable gases should be stored away from other combustible materials. Alternatively a fire-resistant partition may be - Check storage areas for flammable or hazardous concentrations of gases prior to entry. - Preferably store full and empty cylinders separately. - Full cylinders should be arranged so that the oldest stock is used first. - Cylinders in storage should be checked periodically for general condition and leakage. - Protect cylinders against physical damage. Move and store cylinders correctly as instructed for their manual handling. NOTE: A 'G' size cylinder is usually too heavy for an inexperienced operator to raise or lower. ▶ Store away from incompatible materials. #### Conditions for safe storage, including any incompatibilities Other information Suitable container Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. - Cylinder: - ▶ Ensure the use of equipment rated for cylinder pressure. - Ensure the use of compatible materials of construction. - Valve protection cap to be in place until cylinder is secured, connected. - Cylinder must be properly secured either in use or in storage - Cylinder valve must be closed when not in use or when empty. - Segregate full from empty cylinders. WARNING: Suckback into cylinder may result in rupture. Use back-flow preventive device in piping. Low molecular weight alkanes: - May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate. - ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat. - Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens - may generate electrostatic charges, due to low conductivity, on flow or agitation. - Avoid flame and ignition sources Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Storage incompatibility Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen. Butane/ isobutane - reacts violently with strong oxidisers - reacts with acetylene, halogens and nitrous oxides - is incompatible with chlorine dioxide, conc. nitric acid and some plastics - may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour. Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C) #### Propane: 2.100 ppm - Freacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc. - ▶ liquid attacks some plastics, rubber and coatings - may accumulate static charges which may ignite its vapours - Avoid reaction with oxidising agents - Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances Not Available #### SECTION 8 Exposure controls / personal protection #### **Control parameters** #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|------------|---------------|-------------------------|------------------|------------------|---| | New Zealand Workplace
Exposure Standards (WES) | butane | Butane | 800 ppm / 1900
mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | propane | Propane | Not Available | Not
Available | Not
Available | Simple asphyxiant - may present an explosion hazard | #### **Emergency Limits** propane | Ingredient | TEEL-1 TEEL-2 | | | TEEL-3 | |---------------------|---------------|---------------|--------------|---------------| | COLORGUN PROPELLANT | Not Available | Not Available | | Not Available | | Ingredient | Original IDLH | | Revised IDLH | | | butane | Not Available | | 1,600 ppm | | Version No: **1.2** Page **6** of **14** Issue Date: **12/08/2022** #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 #### MATERIAL DATA Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded. Odour Safety Factor (OSF) is determined to fall into either Class C, D or E. The Odour Safety Factor (OSF) is defined as: OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm Classification into classes follows: ClassOSF Description - A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities - B 26-550 As "A" for 50-90% of persons being distracted - C 1-26 As "A" for less than 50% of persons being distracted - D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached - E <0.18 As "D" for less than 10% of persons aware of being tested For butane: Odour Threshold Value: 2591 ppm (recognition) Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects. Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE) For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE) ### **Exposure controls** Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed
engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. $\label{lem:employers} \mbox{Employers may need to use multiple types of controls to prevent employee overexposure.}$ - Areas where cylinders are stored require good ventilation and, if enclosed need discrete/ controlled exhaust ventilation. - Vented gas is flammable, and may spread from its origin. Vent path must not contain ignition sources, pilot lights, naked flames. - Secondary containment and exhaust gas treatment may be required by certain jurisdictions. - Local exhaust ventilation (explosion proof) is usually required in workplaces. - · Consideration should be given to the use of doubly-contained piping; diaphragm or bellows-sealed, soft-seat valves; backflow prevention devices; flash arrestors and flow- monitoring or limiting devices. - · Automated controls should ensure that workplace atmospheres do not exceed 25% of the lower explosive limit (LEL) (if available). - Monitor the work area and secondary containments for release of gas. - Automated alerting systems with automatic shutdown of gas-flow may be appropriate and may in fact be mandatory in certain jurisdictions. - Respiratory protection in the form of air-supplied or self-contained breathing equipment must be worn if the oxygen concentration in the workplace air is less than 19%. - Cartridge respirators DO NOT give protection and may result in rapid suffocation. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|----------------------------| | gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. - Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. - Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) Version No: 1.2 Page 7 of 14 Issue Date: 12/08/2022 Print Date: 12/08/2022 **COLORGUN PROPELLANT** #### Personal protection - Safety glasses with side shields - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] - Eye and face protection Close fitting gas tight goggles #### DO NOT wear contact lens Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1 No special equipment required due to the physical form of the product. #### Skin protection e Hand protection below #### Hands/feet protection Wear general protective gloves, eg. light weight rubber gloves. When handling sealed and suitably insulated cylinders wear cloth or leather gloves. Wear chemical protective gloves, e.g. PVC. Wear safety footwear. #### **Body protection** Other protection See Other protection below - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton - ▶ Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. - Protective overalls, closely fitted at neck and wrist. - ► Eye-wash unit. #### IN CONFINED SPACES: - Non-sparking protective boots - Static-free clothing. - Ensure availability of lifeline. Staff should be trained in all aspects of rescue work. Rescue gear: Two sets of SCBA breathing apparatus Rescue Harness, lines etc. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. No special equipment required due to the physical form of the product. #### Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter: the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 5 x ES | Air-line* | AX-2 | AX-PAPR-2 ^ | | up
to 10 x ES | - | AX-3 | - | | 10+ x ES | - | Air-line** | - | - * Continuous Flow; ** Continuous-flow or positive pressure demand - ^ Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Respiratory protection not normally required due to the physical form of the product. - Positive pressure, full face, air-supplied breathing apparatus should be used for work in enclosed spaces if a leak is suspected or the primary containment is to be opened (e.g. for a cylinder change) - Air-supplied breathing apparatus is required where release of gas from primary containment is either suspected or demonstrated. ### **SECTION 9 Physical and chemical properties** ### Information on basic physical and chemical properties Appearance Packed as liquid under pressure and remains liquid only under pressure. Sudden release of pressure or leakage may result in rapid vapourisation with generation of a large volume of highly flammable / explosive gas. Colourless gas in a aerosol can Physical state Relative density (Water = 1) Version No: 1.2 Page 8 of 14 Issue Date: 12/08/2022 Print Date: 12/08/2022 #### **COLORGUN PROPELLANT** | | 1 | | 1 | |--|-------------------|---|---------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | -81 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 10 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.5 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (Not
Available%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 Toxicological information** #### Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure. Hydrocarbons may sensitise the heart to adrenalin and other circulatory catecholamines; as a result cardiac arrhythmias and ventricular fibrillation may occur. Abrupt collapse may produce traumatic injury. Central nervous system (CNS) depression may be evident early. Symptoms of moderate poisoning may include giddiness, headache, dizziness and nausea. Serious poisonings may result in respiratory depression and may be fatal. #### Inhaled The paraffin gases C1-4 are practically non-toxic below their lower flammability limits (18000-50000 ppm). Above this level, incidental effects include CNS depression and irritation but these are reversible upon cessation of the exposure. The C3 and iso-C5 hydrocarbons show increasing narcotic properties; branching of the chain also enhances the effect. The C4 hydrocarbons appear to be more highly neurotoxic than the C3 and C5 members. Several fatalities due to voluntary inhalation of butane have been reported, possibly due to central, respiratory and circulatory effects resulting from anaesthesia, laryngeal oedema, chemical pneumonia or the combined effects of cardiac toxicity and increased sympathomimetic effects. Inhalation of petroleum gases may produce narcosis, due in part to olefinic impurities. Displacement of oxygen in the air may cyanosis. If present in sufficient quantity these gases may reduce the oxygen level to below 18% producing asphyxiation. Symptoms include rapid respiration, mental dullness, lack of coordination, poor judgement, nausea and vomiting. The onset of cyanosis may lead to unconsciousness and death. Common, generalised symptoms associated with non-toxic gas inhalation include: - recentral nervous system effects such as headache, confusion, dizziness, progressive stupor, coma and seizures; - respiratory system complications may include tachypnoea and dyspnoea; - cardiovascular effects may include circulatory collapse and arrhythmias; - b gastrointestinal effects may also be present and may include mucous membrane irritation and nausea and vomiting. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatique and loss of co-ordination ### Ingestion Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments #### **Skin Contact** The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Version No: **1.2** Page **9** of **14** Issue Date: **12/08/2022** #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ### Eye Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures.. Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. ###
Chronic Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties #### Animal studies No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhaltion exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation. | COLORGUN PROPELLANT | TOXICITY Not Available | IRRITATION Not Available | |---------------------|--|--| | butane | TOXICITY Inhalation(Rat) LC50; 658 mg/l4h ^[2] | IRRITATION Not Available | | propane | TOXICITY Inhalation(Rat) LC50; >13023 ppm4h ^[1] | IRRITATION Not Available | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute specified data extracted from RTECS - Register of Toxic Effect of cher | toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise mical Substances | for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members #### **COLORGUN PROPELLANT** Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is: C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is: Benzene (LOAEL .>=10 ppm) >C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). #### Genotoxicity *In vitro:* The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vitro* genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian *in vitro* test systems. *In vivo:* The majority of the Petroleum Hydrocarbon Gases Category components are negative for *in vivo* genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in *in vivo* test systems Version No: **1.2** Page **10** of **14** Issue Date: **12/08/2022** #### **COLORGUN PROPELLANT** Print Date: 12/08/2022 Developmental toxicity: Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is: Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is: $Benzene (LOAEL = 300 \; ppm) > butadiene (NOAEL .>= 6,000 \; ppm) > C5-C6 \; HCs (NOAEL .>= 6,521 \; ppm) > C1-C4 \; HCs (LOAEL = 9,000 \; ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen)$ PROPANE No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification Data available to make classification ### **SECTION 12 Ecological information** #### **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------|------------------|--|--|------------------|------------------| | COLORGUN PROPELLANT | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | butane | LC50 | 96h | Fish | 24.11mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | propane | LC50 | 96h | Fish | 24.11mg/l | 2 | | | EC50 | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | Legend: | | 1. IUCLID Toxicity Data 2. Europe ECHA Regis | tered Substances - Ecotoxicological Information
Hazard Assessment Data 6. NITE (Japan) - Biod | | | For petroleum distillates: Environmental fate: When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant. As noted previously, the solubility and
vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10–C25 range, which are degraded readily; - (2) isoalkanes; - (3) alkenes; - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics; - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Version No: **1.2** Page **11** of **14** Issue Date: **12/08/2022** COLORGUN PROPELLANT Print Date: 12/08/2022 Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Fcotoxicity: Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9 #### **Environmental Fate** Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilistion from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported. Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that
n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important. Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane. For Propane: Koc 460. log Kow 2.36 Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1. Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment. Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water. Ecotoxicity: The potential for bioconcentration in aquatic organisms is low. Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. DO NOT discharge into sewer or waterways ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | butane | LOW | LOW | | propane | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------| | butane | LOW (LogKOW = 2.89) | | propane | LOW (LogKOW = 2.36) | ### Mobility in soil | Ingredient Mo | Mobility | |---------------|------------------| | butane LOV | OW (KOC = 43.79) | Version No: 1.2 Page **12** of **14** Issue Date: 12/08/2022 Print Date: 12/08/2022 ### **COLORGUN PROPELLANT** | Ingredient | Mobility | |------------|-------------------| | propane | LOW (KOC = 23.74) | ### **SECTION 13 Disposal considerations** ### Waste treatment methods Product / Packaging disposal - lacktriangledown Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Management Authority for disposal. - ▶ Evaporate or incinerate residue at an approved site. - Return empty containers to supplier. - ► Ensure damaged or non-returnable cylinders are gas-free before disposal. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. ### **SECTION 14 Transport information** #### **Labels Required** NO **Marine Pollutant** HAZCHEM 2YE ### Land transport (UN) | UN number | 1075 | | |------------------------------|---|--| | UN proper shipping name | PETROLEUM GASES, LIQUEFIED | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | Packing group | Not Applicable | | | Environmental hazard | Not Applicable | | | Special precautions for user | Special provisions 392 Limited quantity 0 | | ### Air transport (ICAO-IATA / DGR) | UN number | 1075 | | | | |------------------------------|---|----------------------------|---|--| | UN proper shipping name | Petroleum gases, liquefic | Petroleum gases, liquefied | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 2.1 Not Applicable 10L | | | | Packing group | Not Applicable | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack | | A1 200 150 kg Forbidden Forbidden Forbidden Forbidden | | ### Sea transport (IMDG-Code / GGVSee) | | • | |-------------------------|----------------------------| | UN number | 1075 | | UN proper shipping name | PETROLEUM GASES, LIQUEFIED | Version No: 1.2 Page 13 of 14 Issue Date: 12/08/2022 Print Date: 12/08/2022 #### **COLORGUN PROPELLANT** | Transport hazard class(es) | IMDG Class | 2.1 | |------------------------------|--------------------|----------------| | Transport nazaru ciass(es) | IMDG Subrisk | Not Applicable | | Packing group | Not Applicable | | | Environmental hazard | Not Applicable | | | | EMS Number | F-D, S-U | | Special precautions for user | Special provisions | 392 | | | Limited Quantities | s 0 | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | butane | Not Available | | propane | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | butane | Not Available | | propane | Not Available | ### **SECTION 15 Regulatory information** ### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|----------------| | HSR001009 | LPG | Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit. ### butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) ### propane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |-------------------|--|--| | 2.1.1A and 2.1.1B | 100 kg (or 100 m3 for a permanent gas) | 100 kg (or 100 m3 for a permanent gas) | ### **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information ### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |------------------|--------------------------------------|------------|------------|--| | LPG | | | prohibited | | | 2.1.1A or 2.1.1B | | | | 1 L | #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory | Status | | |--------------------|--------|--| | | | | Version No: 1.2 Page **14** of **14** Issue Date: 12/08/2022 Print Date: 12/08/2022 #### **COLORGUN PROPELLANT** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (butane; propane) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | |
Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 12/08/2022 | |---------------|------------| | Initial Date | 12/08/2022 | #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|-----------------------| | 0.2 | 12/08/2022 | Ingredients, Synonyms | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.